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Kinetic Pinning and Biological Antifreezes
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Biological antifreezes protect cold-water organisms from freezing. An example is the antifreeze
proteins (AFP’s) that attach to the surface of ice crystals and arrest growth. The mechanism for growth
arrest has not been heretofore understood in a quantitative way. We present a complete theory based on a
kinetic model. We use the ‘‘stones on a pillow’’ picture. Our theory of the suppression of the freezing
point as a function of the concentration of the AFP is quantitatively accurate. It gives a correct
description of the dependence of the freezing point suppression on the geometry of the protein, and
might lead to advances in design of synthetic AFP’s.
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FIG. 1. (a) The ‘‘stones on a pillow’’ model. AFP molecules,
white circles, attach to a surface. (b) Visualization of a surface
of constant mean curvature. The size of the unit cell has been
set to unity.
In polar regions, many fish, insects and plants flourish
at temperatures well below the freezing point of their
bodily fluids [1–4]. Often, particularly in fish [5], this is a
noncolligative effect; ice growth within the organisms is
arrested by a class of plasma proteins called antifreeze
proteins (AFP). They are usually peptides or glycopep-
tides. These molecules attach irreversibly to ice surfaces
[5] and prevent crystal growth[1,6] until the water con-
taining the AFP’s is supercooled by as much as two
degrees Celsius. The mechanism for the suppression of
the freezing point is not understood. In this Letter we
present a growth model which allows us to understand
AFP’s in considerable detail, and, in particular, to calcu-
late the dependence of the undercooling on AFP concen-
tration. [7,8].

Growth arrest by AFP’s is known to occur because the
protein adsorbs on the surface of the growing ice crystal,
and suppresses growth near that site. This could stop
growth in various ways. One picture is that the AFP’s
are obstacles to step-flow growth [5] of a facet. However,
such a mechanism assumes that the surface is faceted,
which is true only for a basal plane of ice near the
freezing point. Other surfaces of ice are thermally rough
at those temperatures, and AFP’s adsorb mostly on those
surfaces [6]. An alternative picture, which we adopt, is the
‘‘stones on a pillow model’’ of Knight et al. [1,2]. In that
view, the AFP’s are obstacles to growth of a smoothly
curved surface. To grow, the crystal must bulge between
the attachment sites, and the freezing point is depressed
by the Gibbs-Thompson effect, namely, that a curved
surface has a lower freezing point than a flat one; see
Fig. 1(a). Here, we present a quantitative kinetic theory of
biological antifreezes based on this picture.

The surface of the crystal which is not under the AFP
must have constant mean curvature � given by the Gibbs-
Thompson condition [9]: � � ��T=lo where �T � �Tm �
T�=Tm (the dimensionless undercooling) and Tm is the
equilibrium melting temperature [9]. lo is a characteristic
length, namely, the interfacial tension � divided by �, the
0031-9007=04=93(12)=128102(4)$22.50 
latent heat of fusion per unit volume. For ice lo � 1 �A.
Consider a surface h�x; y� which has stopped growing. We
assume that the AFP’s prevent growth in a circle of radius
b� 10 �A on the surface. This would be the case if the
AFP were spherical and partly buried in the ice, for
example. (We treat more complicated molecular geome-
tries, below.) The angle of the ice with the blocked region
can take on any value. In the small-slope approximation,
j@h=@xj � 1, j@h=@yj � 1, the curvature of the interface
is given by � � �h. Then the Gibbs-Thompson condition
becomes the Poisson equation:
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�h � ��T=lo 	 �4��: (1)

This equation is familiar in electrostatics. h plays the role
of the potential, and the effective (positive) charge den-
sity � is defined by Eq. (1).

Now consider a periodic square array of AFP’s. We
must solve Eq. (1) with boundary conditions that the
normal derivative of h vanishes at the edge of the unit
cell, and h � 0 at the edge of the AFP. The problem is
easily solved numerically; a contour plot is shown in
Fig. 1(b). In order for a periodic solution to the equation
to exist, the AFP must act as a negative charge so that the
system is ‘‘neutral’’, i.e., flat on large scales. That is, � �
�nq, where n is the density of AFP’s on the surface. To
define the effective charge q we integrate Eq. (1) over the
surface and use Gauss’’ law:

h�r� ri� � rhijr�rij�b � �T=�2�lon� (2)

where h�i is the average around the edge of the AFP. The
charge represents the slope of h at the edge of the AFP:

q � ��1=2�h�r� ri� � rhijr�rij�b (3)

so that jqj � �b=2��@h=@r�.
From Eq. (2), the slope at the edge of the AFP in-

creases with undercooling. We assume that if @h=@r at the
edge of the AFP exceeds some critical value � the anti-
freeze molecule will be engulfed. � is set by the physical
chemistry of the AFP and the interface, and should be of
order unity or less. Now, the maximum undercooling ��T is
given by Eq. (2) with h@h=@ri � �. For b� 10 �A , and ��T
corresponding to 1 � undercooling we need n � n� �
��T=�2��lob� � 1012cm�2, or a distance between AFP’s
of order 100 �A. From Eq. (3) we find j2qj<�b.

For irreversible adsorption, the relationship between n,
the density of AFP on the surface, and the concentration
in solution must depend on the kinetics of the growth of
the crystal, which we now model. In linear response
theory, the growth speed of the crystal boundary is
proportional to the variation of the overall free energy
of the system with respect to the normal displacement. In
the small-slope limit we take this to be �h. Then

_h � ��
�
�h

Z
���1� jrhj2�1=2 ���Th�d

2r: (4)

The first term of the integrand is the free energy per unit
area of surface, and in the second, ��T is the free energy
difference of solid and liquid phases per unit volume
close to melting point. � is a kinetic coefficient, such
that vo � �� is the growth velocity of a flat surface at
unit undercooling. This equation is equivalent to [10]

_h � vo�l0�h� �T�: (5)

The important parameters for growth are a velocity vo, a
length lo, and �T (dimensionless).
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The AFP’s are pinning centers for the surface, whose
effect may be expressed as a set of boundary conditions:

hjjr�rij�b � hi: (6)

Here ri is the position of ith AFP and hi is the local
position of the interface when the ith AFP is adsorbed.
We assume that the AFP’s in the water adsorb at random
on the ice surface with rate, k�, per unit area.

It will be useful to split h�r� into two parts: h�r� �
H���r�, where H is the average height, and ��r� mea-
sures the small-scale variations. The AFP’s have density
n. We choose � to develop in time as

_� � volo���� 4��� (7)

where � � nhqi is chosen, as above, to make the surface
flat on the average, and hqi is the average charge. It is not
hard to show that the time derivative in Eq. (7) for � is
small (the quasistatic limit). Thus

�� � �4����
X
i

qi��r� ri��: (8)

The last term accounts for the boundary conditions,
Eq. (6). The slopes at the edge of the AFP’s are not fixed:
as the interface moves the slopes increase from 0 at the
moment of adsorption to �, at which point the AFP is
engulfed by ice. Correspondingly, 0< jqj< �b=2.

Near an AFP, � is dominated by the contribution of
that protein. Electrostatics in two dimensions gives [11]

��r� ’ �qi log���r� ri�2n�: (9)

Therefore,

qi ’
H � hi

log��nb2�
< 0: (10)

Suppose the interface moves with constant speed V. Each
hi is fixed, but H changes uniformly with time.
Equation (10) implies that the magnitudes of individual
point charges qi, and thus the slopes at the edges of the
AFP’s, are uniformly distributed between 0 and ��b=2,
i.e., hqi � ��b=4 and � � nb=4.

Subtracting Eq. (7) from Eq. (5), we find _H � vo��T �
4�l0��. If _H � V, we have � � nb=4, and

V � vo��T � ��lobn�: (11)

The first term is the steady growth of a flat surface, and
the second the slowing down due to the AFP’s.

The evolution of n can be calculated by noting that its
rate of increase is k�, and that its rate of decrease is the
rate that AFP’s are engulfed. Equation (10) implies _qi �
V= log��nb2�. Since the qi are uniformly distributed we
must have dn=n � � _qidt=��b=2�. This gives

_n � k� �
2nV

�b log�1=�nb2�
: (12)

Eqs. (11), (12) determine the dynamics of the interface.
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In the steady state we put _n � 0 in Eq. (12), and use the
expression for V. Thus,

k�
vo�T

�
n�2� n=n��

�b log�1=�nb2�
; (13)

where n� � �T�2��bl0��1. The right hand side of this
equation has a maximum for n � n�. Thus, there is no
constant speed solution unless the right hand side is small
enough, i.e., for small enough k� or large enough �T . The
speed V decreases from vo as �T decreases, and, at a
threshold, abruptly jumps to zero in agreement with
experiment [12]. The threshold, ��T obeys

���T�
2= log�2�l0=b�

�
T� ’ ��b�22�l0k�=vo: (14)

Eq. (14) is the central result of this work.
To test our approximations, notably the quasistatic

limit for �, we have performed a numerical simulation
of our model. The results on a 150� 150 square lattice,
with each cell representing a single AFP (Fig. 2) support
our analysis. The transition from the steady growth to the
arrested interface regime occurs at a lower adsorption
rate k� than predicted, but the discrepancy is rather small.

Beyond the transition point, growth stops. The result-
ing static interface must obey Eq. (5) with _h � 0, i.e.,
Eq. (1). After arrest, as Eq. (12) shows, n increases as
irreversible adsorption continues until limited by some
aspect of surface chemistry that we have not considered.

These results hold if the region blocked by each AFP is
a circle. We can also account for the fact that real AFP’s
are often anisotropic by assuming that the region blocked
is elliptical, with semimajor and semiminor axes a and b,
respectively. The potential h�x; y� can be found by con-
formal mapping [13]. Using this method, it is easy to
show that Eq. (10) is replaced by H � hi ’
�qi= log��n�a� b�2=4�. The slope of h will reach its
critical value near x � �a, and its maximum will be
given by the radius of curvature of the ellipse, of order
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FIG. 2 (color online). (a) Simulation results for the speed of
the interface as a function of time, for various values of control
parameter k�b3=v0, ranging from 0:5� 10�4 to 3� 10�4.
�T � 0:005 and � � 1=�2��. (b) Speed in the steady state vs
reduced adsorption rate: comparison of simulation (points)
with analytical result (line) given by Eq. (14).
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b. Thus qmax � �b=2. With these changes, the left-hand
side of Eq. (14) becomes

���T�
2= log�8�l0b=�a� b�2��T�: (15)

Equations (14) and (15) give ��T in terms of the geome-
try of the AFP (a and b), the fundamental length lo, and
the dimensionless parameter �. However, Eq. (14) also
involves k�=vo. The rate k� is clearly proportional to the
concentration C of AFP in solution: k� � vAC where vA
is a velocity. vA=vo is a crucial parameter.

To find this parameter in a realistic way, there is
another effect which we must consider; in any experi-
ment, soon after the adsorption process starts, water near
the ice surface will be depleted of AFP. The thickness of
the depletion layer depends on the diffusion coefficientD,
as

������
Dt

p
. That is, k� becomes time dependent, and thus

vA ’
���������
D=t

p
. The same argument applies to the rate of

crystallization itself: our estimate for vo fails as soon
as the process is limited by thermal diffusion through a
diffusive layer. Thus vo ’

�����������������
�TT=�t

p
, where �T is ther-

mal conductivity of water. From the Einstein formula
D � kBT=6�$b:

vA=vo �
���������
%=b

p
� 10�2 (16)

where % � kB�=6�$�T � 1:2� 10�10 cm. By combin-
ing Eqs. (14) and (16) we can write

��T�log�2�l0=b�
�
T��

�1=2 ’ �
�������������������������������
2�b3=2l0%1=2C

q
: (17)

For anisotropic AFP’s we must use Eq. (15). The longer
axis a sets the hydrodynamic radius of the ellipsoidal
particle. Its diffusion coefficient may be approximated by
D � kBT�&� 1�=6�$a, where & � log��a� b�=2b�
(typically, &< 2). Thus

��T�log�2�l0=b�
�
T� � 2&��1=2 ’ �b�

%
a
�1=4

������������������������������
2��&� 1�l0C

q
:

(18)

Using these formulas, we have been able to fit the
experimental data on natural AFP’s of two different
classes: AFP-I, and AFP-III [7,8]. They have rather dif-
ferent architectures: AFP- I are '-helical rodlike mole-
cules which we model as cylinders (b � 3:5 �A, a �

25 �A), while AFP-III have a more complicated globular
structure, which we approximate as spheres (b � a �

8 �A). These lengths are derived from the known struc-
tures of the molecules; the only free parameter of our
theory is �. The theoretical curves ��T�C� are in excellent
agreement with the experiments; see Fig. 3. The values of
the fitting parameter (� ’ :25 for AFP-I, and � � :33 for
AFP-III) are physically reasonable, close to each other,
and small enough to justify the small-slope approxima-
tion used above.
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FIG. 3 (color online). Comparison of theory to experiment
for maximum undercooling of water in the presence of AFP-
Type III (diamonds) and two modifications of AFP-Type I
(circles, squares).
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According to Eq. (18), the activity is strongly depen-
dent on the smaller dimension of the AFP. This may be
useful for the design of synthetic AFP’s. For example, by
using ring-shaped molecules ��T could be increased since
the effective size is set by the largest dimension, the
radius of the ring. Our results are consistent with the
measured ��T�C� for antifreeze glycoproteins. However,
their molecular architecture and conformations are more
complicated than those we have discussed, and their
analysis would go beyond the scope of this work.

Finally, we can compare our results with the related
problem of the motion of a pulled elastic interface in a
medium with static obstacles to interface motion. This is
of interest in the description of the kinetics of domain
walls, charge density waves and flux lines in supercon-
ductors [14]. The interplay of long-range elastic coupling
and local pinning results in a transition at a critical value
of the pulling force, and near the transition, the average
speed of the interface goes continuously to zero. Our
model has pinning of the interface by the AFP molecules,
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and coupling due to surface tension, but the transition is
discontinuous, in agreement with experiment [12]. The
difference is that the AFP’s are not stationary. Thus, we
call our model ‘‘kinetic pinning’’. There should be a
crossover between the static pinning and kinetic pinning
if diffusion of the obstacles is taken into account.
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