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We investigate the spatially anisotropic square lattice quantum antiferromagnet. The model describes
isotropic spin-1=2 Heisenberg chains (exchange constant J) coupled antiferromagnetically in the
transverse (J?) and diagonal (J�), with respect to the chain, directions. Classically, the model admits
two ordered ground states–with antiferromagnetic and ferromagnetic interchain spin correlations–
separated by a first-order phase transition at J? � 2J�. We show that in the quantum model this
transition splits into two, revealing an intermediate quantum-disordered columnar dimer phase, both in
two dimensions and in a simpler two-leg ladder version. We describe quantum-critical points separating
this spontaneously dimerized phase from classical ones.
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An interplay between geometric frustration and quan-
tum fluctuations is at the heart of intensive current in-
vestigations into the nature of possible SU�2�-invariant
Mott insulators and quantum phase transitions. The ab-
sence of any ‘‘natural’’ small parameter, however, makes
a traditional perturbative approach difficult. Aside from
direct numerical attacks involving exact diagonaliza-
tion and quantum Monte-Carlo techniques, this feature
forces one to extend the parameter space of frustrated
magnetic models and explore various ‘‘corners’’ of the
resulting phase diagram in the hope of gaining new in-
sights into the physically relevant region of system’s
parameters. In this Letter, we explore a simple spatially
anisotropic frustrated spin model which allows the ap-
plication of powerful analytical methods borrowed from
one dimension.

The model we consider–the spatially anisotropic
square lattice antiferromagnet –is a quasi-one-
dimensional generalization of the well-studied square
lattice antiferromagnet with frustrating antiferro-
magnetic exchange along diagonals, also known as the
J1 � J2 model. It describes a collection of antiferromag-
netic spin � S chains with exchange constant J running
along horizontal (chain) direction. The chains are inter-
acting with their nearest neighbors via weak antiferro-
magnetic spin exchange in the transverse (J?) and di-
agonal (J�), with respect to the chain, directions. Re-
cently this model was investigated by Nersesyan and
Tsvelik (NT) [1] who predicted a novel RVB-like phase
with deconfined massive spinons at the special ratio of
microscopic exchange constants: J? � 2J� � J. We
shall comment on this work and subsequent numerical in-
vestigations [2,3] at the end of our Letter. Let integer
index n numerate sites along the chain while index m nu-
merates chains. Then the Hamiltonian is H �

P
mH

�0�
m �

V, where H�0�
m is the standard Heisenberg Hamiltonian of

the m-th chain and the interchain interaction reads
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V �
X
n;m

fJ?San;mSan;m�1 � J�
X

q�
1

San;mSan�q;m�1g: (1)

Here a � x; y; z is the vector index over which implicit
summation is implied. The classical (S � 1) phase dia-
gram is simple: for J? > 2J� ordering of the spins in the
transverse to chain direction is antiferromagnetic (AFM
phase), whereas for J? < 2J� it is ferromagnetic (FM
phase); spins order antiferromagnetically along chains. In
the isotropic J1 � J2 model these orderings correspond to
the Néel and four-sublattice phases, respectively. The line
J? � 2J� describes a first-order transition between these
two phases. Along this line the interchain interaction can
be written in a more suggestive form

V� �
X
n;m

J��S
a
n;m � San�1;m��S

a
n;m�1 � San�1;m�1�: (2)

Our goal is to understand the phase diagram of the
quantum S � 1=2 model in the limit of weak interchain
couplings J?; J� � J. Taking the continuum limit along
the chain direction (x � na, a is the lattice spacing), the
spin operator is decomposed as

San;m ! a�Jam;R�x� � Jam;L�x� � ��1�nNa
m�x�� (3)

in terms of chiral components Jam;R=L of the uniform spin
magnetization of the m-th chain, and the staggered spin
magnetization Na

m (scaling dimension 1=2). The uniform
spin magnetization Jam � Jam;R � Jam;L is the conserved
spin current (scaling dimension 1) and a generator of
O�3� spin rotations. The two fields in (3) are connected
via the following operator product expansion (OPE)

JaR=L�x; ��N
b�x0; �0� �

�i�ab��x0; �0� � i�abcNc�x0; �0�
4��v��� �0� � i�x� x0��

(4)

Here the upper/lower signs on the right hand side apply
for the right/left (R/L) moving currents, respectively,
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and v � �Ja=2 is the spin velocity. Of major importance
is the appearance of the staggered dimerization operator �
(scaling dimension 1=2). It is the continuum limit of the
lattice operator involving the scalar product of two neigh-
boring spins, �m�x� � ��1�nSan;mSan�1;m.

The spin algebra encoded in (4) and well-known OPE
of the chiral components of the spin current [4] follow
from the fact that the Hamiltonian density of the isolated
Heisenberg chain is described by the SU1�2�WZW model
perturbed by a marginally irrelevant backscattering term
�gbs � O�J��

H �0�
m �

2�v
3

�Jam;RJ
a
m;R � Jam;LJ

a
m;L� � gbsJam;RJ

a
m;L: (5)

The c-functions appearing in the OPE above are just the
Green’s functions of right- and left-moving fermions
which are governed by the Hamiltonian (5) with gbs � 0.

Having exposed the structure of the unperturbed the-
ory, we now turn to the interchain interaction (1). Its
continuum low-energy Hamiltonian density contains all
terms allowed by the symmetries of the lattice model
(these include reflection with respect to transverse direc-
tion and translation by one lattice constant)

V �
X
m

g1N
a
mN

a
m�1 � g2J

a
mJ

a
m�1 � g3a

2@xN
a
m@xN

a
m�1

�g4�m�m�1 (6)

Here @x denotes derivative with respect to x and the bare
coupling constants follow from substituting (3) in (1)

g1 � �J? � 2J��a; g2 � �J? � 2J��a;

g3 �
J?a
2

; g4 � 0: (7)

The scaling dimensions of the first, second, and third in-
teraction terms in (6) are one, two, and three, respec-
tively. The last term (scaling dimension 1) is included
here because it respects the symmetries of the lattice
model (1). Although its bare coupling constant is zero,
quantum fluctuations can (and will) generate some fi-
nite g4.

At this level the phase diagrams of the quantum model,
(6) with g4 � 0, and classical one, (1) with S � 1, are
identical. As long as J? � 2J�, (6) is dominated by the
strongly relevant interaction of staggered magnetizations
which drives the system into one of the classically or-
dered phases: AFM for g1 > 0 and FM for g1 < 0.

However, the transitional region J? � 2J� requires a
closer look because there the amplitudes of the both
relevant terms are zero. To begin, let us fine tune to the
point g1 � 0. On the lattice this corresponds to (2), whose
continuum limit is given by (6) with g1 � g4 � 0,

V � �
X
m

g2JamJam�1 � g3a2@xNa
m@xNa

m�1: (8)

The situation is now apparently controlled by the mar-
ginally relevant (g2 > 0) current-current interaction
127202-2
which seems to suggest that the strongly irrelevant g3
term does not play any role. Recall that the (Kac-Moody)
algebra of spin currents JaR=L is closed in the sense that
OPE of two like currents produces another current of the
same chirality [4]. Thus V� with g3 � 0 will ‘‘repro-
duce’’ itself in every order of the expansion in powers of
the coupling constant g2. This peculiar behavior is de-
stroyed by g3 � 0 (or any other equally or even more
irrelevant term). To see so, we expand the partition func-
tion to second order in V�. As follows from the discus-
sion above, one should concentrate on the cross-term
(/ g2g3)Z

x;�

Z
x0;�0

Jam�x
0; �0�@xN

b
m�x; ��J

a
m�1�x

0; �0�@xN
b
m�1�x; ��:

Applying the OPE (4) to the same-chain operators at
nearby points, differentiating the c-function prefactors
with respect to x and performing elementary integration
over the relative coordinates, one obtains a relevant cor-
rection to the Hamiltonian of the same form as (6). The
coefficients in (7) are thereby replaced by

g1 �
�
J? � 2J� �

2J2�
�2J

�
a; g4 � �

3J2�a

�2J
; (9)

while two other couplings g2;3 remain unchanged. Exactly
the same result (9) can be obtained by performing the
standard renormalization group (RG) analysis of (5) and
(6). There one obtains five coupled nonlinear differential
equations for g1�4 and gbs. In the transitional region,
corresponding to g1;4 � O�J2�=J� � J�, RG equations
decouple and admit a simple analytical solution, which
reproduces (9), for ‘ of the order 1 (here ‘ parametrizes
the short-distance cutoff: a‘ � a0e‘). Our derivation of
the renormalized coupling constants is very similar in
spirit to the recent calculation of second-order corrections
to coupling constants of two relevant and competing
interactions in the extended Hubbard model [5].

What are the phases of V with relevant couplings
given by (9)? We begin our analysis by studying two
coupled chains, that is, frustrated spin ladder (m � 1; 2
in (6)). Hamiltonian density of the ladder H ladder �

H �0�
1 �H �0�

2 �V can be recast as a theory of four
massive real (Majorana) fermions, see Ch. 21 of [4],

H ladder �
X4
a�1

�
�

iv
2
"a
R@x"

a
R �

iv
2
"a
L@x"

a
L

�

� imt

X3
a�1

"a
R"

a
L � ims"

4
R"

4
L � �Hmarg (10)

where �Hmarg, originating from gbs in (5) and g2 in (6),
describes residual marginal interactions between
Majorana fermions

�Hmarg�
g�
4

 X3
a�1

"a
R"

a
L

!
2

�
g�
2

X3
a�1

"a
R"

a
L"

4
R"

4
L; (11)

with g
 � g2 
 gbs. Ignoring �Hmarg, the first three
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FIG. 1. Phase diagram of the frustrated ladder. Line AB
marks the parameters corresponding to the lattice model.
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Majorana fermions form a triplet with the mass

mt �
%2�g1 � g4�

2�a
�

%2

2�

�
J? � 2J� �

5J2�
�2J

�
; (12)

whereas the fourth fermion "4
R=L is a singlet with

ms � �
%2�3g1 � g4�

2�a
� �

3%2

2�

�
J? � 2J� �

J2�
�2J

�
:

(13)

Both masses receive finite logarithmic corrections from
�Hmarg which we omit in the following. Here %� 1 is
the expectation value of the charge operator which multi-
plies abelian bosonization expressions for the staggered
magnetization and dimerization operators [6]

N m �
%
�a

�cos
�������
2�

p
&m; sin

�������
2�

p
&m;� sin

�������
2�

p
’m�;

�m �
%
�a

cos
�������
2�

p
’m:

(14)

The Hamiltonian (10) predicts two transitions [7] which
happen when one of the renormalized masses becomes
zero.

(i) mt � 0: at this point triplet excitations become
gapless. Integrating out massive fermion "4, we find that
H ladder is the Hamiltonian of the SU2�2� WZW model
with central charge c � 3=2. The nature of the transition
is determined by the sign of remaining marginal coupling
g2 � gbs. Its positive initial value implies marginally
relevant flow to the strong coupling, and hence, first-order
phase transition. For the negative initial value one obtains
marginally irrelevant flow of the coupling constant to
zero, and hence, second-order transition.

(ii) ms � 0: singlet excitations become massless. This
is a continuous Z2 (Ising) transition.

Properties of the various phases are most conveniently
understood from the bosonized form of the relevant part
of interchain interaction (6), V rel, which corresponds to
mass terms in (10). In terms of symmetric and antisym-
metric combinations of bosonic fields on two chains,
’
 � �’1 
 ’2�=

���
2

p
(and similarly for &
) it reads

V rel �
%2

2��a�2
�2g1 cos

�������
4�

p
&� � �g1 � g4� cos

�������
4�

p
’�

� �g1 � g4� cos
�������
4�

p
’�� (15)

Depending on the ratio g1=g4 four phases are possible:
(a) g1 ! �1 is the Haldane (effective spin-1 chain)

phase; mt < 0, ms > 0 and ’� �
����
�

p
=2; &� � 0.

Interchain spin correlations are ferromagnetic. This is
the ladder analog of the classical FM phase.

(b) g1 ! �1 is the rung-singlet phase; mt > 0, ms < 0
and ’� � 0; &� �

����
�

p
=2. Here interchain spin correla-

tions are antiferromagnetic, which corresponds to the
classical AFM phase.

(c) g4 ! �1 is the columnar dimer phase (DC);
ms;t > 0 and ’� � 0; ’� � 0.
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(d) g4 ! �1 is the staggered dimer phase (DS);
ms;t < 0 and ’� �

����
�

p
=2; ’� �

����
�

p
=2.

The last two phases are spontaneously dimerized and
do not have classical prototypes. Using (14) we find that
both dimerized phases break translational symmetry
(along the chain direction) but their ordering patterns
are different. In the DC phase h�1i � h�2i, which de-
scribes columnar dimer long-range order. In the DS phase
h�1i � �h�2i, which makes it the staggered dimer state.
Observe that microscopic couplings (9) choose columnar
dimer as the intermediate phase between the Haldane and
rung-singlet phases of the frustrated ladder.

This feature was missed by [8,9] who described J? �
2J� point of the lattice ladder by (8) with g3 � 0. Our
analysis shows that multicritical point where chains are
coupled only by the marginal current-current interaction
requires additional fine tuning of both g1; g4 (equally, of
ms;mt) to zero. A more detailed understanding can be
gained by considering the model g2 > 0 and exponen-
tially small relevant couplings g1;4 (more specifically
1=j lng1;4j � g2)–though this is not realized by the lattice
model. In this case the NT analysis[1] can be taken over,
treating g1;4 as small perturbations. A semiclassical
analysis for g1;4 � 0 shows that the NT model has a
manifold of ground states in which minima of type (a)
and (b) above –, i.e., Haldane and rung-singlet states–are
degenerate. Perturbing with (15) above splits the energy
densities of these two degenerate states, so that the g4 �
3g1 becomes a first-order transition line (dashed line
through the origin in Fig. 1). Furthermore, the spinons
of the NT phase correspond to domain walls between
these two coexisting states. Remembering that the finite
length spin chains in the Haldane phase are characterized
by spin-1=2 end states, the spinons become physically
transparent as mobile versions of these. Away from the
first-order line, such spinons are therefore confined (i.e.
cost an energy linear in system size), due to the energy
cost to create a domain of the disfavored phase. Thus
although it does not occur in the lattice model studied
127202-3
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FIG. 2. Phase diagram of the two-dimensional model. Solid
(dashed) lines denote phase boundaries of the quantum (clas-
sical) model.
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here, the NT state and its spinons can exist as a first-order
line in a generalized ladder model.

Having understood the ladder, we tackle the full two-
dimensional problem. We treat the relevant interchain
interactions g1;4 (taking g2;3 � 0) using a self-consistent
mean-field approximation[10,11]. Assuming symmetry
breaking along z direction,

V � �z�jg1jhNz
miNz

m � jg4jh�mi�m� (16)

where we used hNz
m�1i � 
hNz

mi for g1 negative (posi-
tive), and z � 2 is the number of neighboring chains.
Using (14) and bosonized form of H �0�

m (with gbs � 0),
rescaling euclidian time � � y=v and introducing dimen-
sionless euclidian distance r � �x; y�=a, we arrive at the
following single-chain sine-Gordon action

Smf �
Z

d2r
	
1

2
�rr’�2 � p sin

�������
2�

p
’� q cos

�������
2�

p
’



(17)

where dimensionless parameters

p�
z%2jg1j

�2v
hsin

�������
2�

p
’i; q�

z%2jg4j

�2v
hcos

�������
2�

p
’i (18)

are effective staggered magnetization and dimerization
fields, respectively. These averages are found by differ-
entiating the free energy density F�p; q� � � lnZ=V; Z �
Tr�e�Smf � with respect to p and q, respectively. Clearly
from (17), the mean-field free energy can depend on p; q

only through - �
�����������������
p2 � q2

p
. One can therefore take

F�p; q� � F�0; -� and take advantage of exact results for
the standard sine-Gordon action[12]. In particular
dF=d- � �c1-1=3, where the numerical constant c1 fol-
lows from equations (10-14) of ref.[12]

c1 �
tan��=6�

3

�
2��1=6�����
�

p
��2=3�

�
2
�
���3=4�
2��1=4�

�
4=3

: (19)

Thus our self-consistent equations

hsin
�������
2�

p
’i �

c1p

-2=3
; hcos

�������
2�

p
’i �

c1q

-2=3
(20)

become simple algebraic ones. They predict two transi-
tions, at g1 � 
jg4j, where both order parameters
(Nz

m; �m � p; q) are nonzero. This makes them first-order
transitions – the first-order nature may be an artifact of
the mean-field approximation. These two transitions sepa-
rate three phases, indicated in Fig. 2. For jg1j> jg4j,
p � 0; q � 0, so the system is AFM or FM, depend-
ing on the sign of g1. For jg1j< jg4j, one finds the col-
umnar dimer phase (rather than staggered since g4 < 0).
Note that obtained phase diagram (Fig. 2) is in qualita-
tive agreement with that of the ladder, which provides
a posteriori support of our mean-field treatment. More-
over, it agrees very well with the phase diagram of the
lattice model (1) obtained in the exact diagonalization
study [3]. We should add that DC phase was not observed
in density matrix renormalization group study [2], pre-
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sumably due to strong finite-size effects at small J?=J.
Now, since exactly this type of dimer ordering is known
to take place in the spatially isotropic J1 � J2 model [13],
it is natural to conclude that the DC phase found here
extends all way up to J? � J.
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