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Resonant tunneling in an open mesoscopic quantum dot is proposed as a vehicle to realize a tunable
Fermi-edge resonance with variable coupling strength. We solve the x-ray edge problem for a generic
nonseparable scatterer and apply it to describe tunneling in a quantum dot. The tunneling current power
law exponent is linked to the S matrix of the dot. The control of scattering by varying the dot shape and
coupling to the leads allows us to explore a wide range of exponents. The sensitivity of mesoscopic
coherence to the Wigner-Dyson ensemble symmetry is replicated in the Fermi-edge singularity.
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Quantum dots host a number of interesting quantum
transport phenomena, such as Coulomb blockade [1,2],
Kondo effect [3], weak localization and universal con-
ductance fluctuations [4]. Electron scattering inside the
dot as well as the dot-lead coupling can be controlled
externally by gates, which makes it possible to reveal
phenomena of interest by varying system parameters.
Such tunability has been exploited to demonstrate [5–8]
new exotic varieties of the Kondo effect. In this article we
propose to employ mesoscopic dots, in a similar control-
lable fashion, to study the Fermi-edge singularity (FES).

FES is a fundamental manifestation of many-body
physics taking place when an electron with energy just
above the Fermi level tunnels into a metal, while leaving
a localized hole behind. After tunneling, the electron
forms a quasiresonance due to interaction with the hole.
This strongly affects the transition rate which is typically
found to be a power law function of Mahan-Nozieres-
deDominicis form A��� / ��� �F�

��. Similar to the
Kondo problem, the FES problem [9,10] is one of few
many-body problems exactly solvable in the nonpertur-
bative regime of strong interaction.

First discovered in the 1960’s in the context of x-ray
absorption in metals [9,10], the FES physics has found
many other applications. In 1992, Matveev and Larkin
[11] considered resonant tunneling and predicted a power
law singularity, identical to FES, as a function of the
resonance position relative to the Fermi level. In this case,
the exponent � in the tunneling I-V characteristic is
controlled by interaction of the tunneling electron and
localized hole. The latter is system specific, and depends
on scattering phases and screening via Friedel sum rule.

Below we generalize the theory [11] to describe reso-
nant tunneling into an open quantum dot. Chaotic scat-
tering in the dot returns the tunneling electron many
times to the hole, which enhances the FES singularity
and makes it ‘‘tunable,’’ i.e., scattering dependent. (In a
noninteracting mesoscopic system [12], multiple returns
to a resonant level are known to produce weak localiza-
tion and conductance fluctuations.) While charging ef-
fects may interfere with resonant tunneling [13,14], in
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open dots one can ignore charge fluctuations and focus on
the interplay of scattering and interaction with localized
hole which forms FES.

Manifestations of FES have been observed in tunnel
junctions [15] and in low temperature telegraph noise
[16]. The role of scattering in quantum dots can be studied
by resonant tunneling spectroscopy [17].

The canonical theory [10], based on separable scatterer
model, is difficult to adapt to mesoscopic scattering. The
problem arises from noncommutativity of the S matrices
before and after electron release in the dot, rendering the
bosonization method [18] used to handle the separable
model, ineffectual. Our approach builds on the Yamada
and Yosida theory [19] of Anderson orthogonality catas-
trophe for multichannel nonseparable scatterer, recently
advanced by Muzykantskii et al. [20,21], as well as on
Matveev phase shift approach [22] to charge dynamics in
quantum dots.

The theory presented below yields an exact relation of
the FES exponent with the quantum dot S matrix and
reveals that the exponent structure is similar to that in the
separable scatterer case. The orthogonality catastrophe
due to Fermi sea shakeup by switching of charge state
at tunneling accounts only for one, negative part of the
FES exponent, while the leading, positive part arises
from interaction in the final state. Applying the result to
the quantum dot problem, we find that by varying the dot
scattering parameters the exponent � can be tuned to any
value in the weak or strong coupling regime.

Our results for open dots complement the work on the
orthogonality catastrophe [23–25] and FES [26] in closed
quantum dots which use the exact one particle states and
energies to express the many-body overlap and transition
rate. The enhancement of orthogonality by disorder, dis-
cussed by Gefen et al. [25], has the same underlying
physics as our backscattering-enhanced FES.

The geometry of interest is pictured in Fig. 1(a). We
consider tunneling from a small dot which holds few
electrons and has a large charging energy, into an open
mesoscopic dot. The latter is characterized by a N � N S
matrix, whereN is the number of channels connecting the
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dot and the leads. The interaction of electrons in the open
dot with the localized hole in the small dot is described
[22] by the backscattering phase 
 in the channel con-
necting the two dots [Fig. 1(b)].

How does the dot S matrix depend on backscattering?
The answer is found most easily by considering an aux-
iliary scattering problem with an additional channel
which describes the point contact between the dots. This
defines an extended S matrix ~S of size �N � 1� � �N � 1�.
The physical matrix S can be linked with the auxiliary
matrix ~S by imposing the quasiperiodicity relation
u�out�N�1 � e�2i
u�in�N�1 on the in and out components of the
added channel, and eliminating these components from
the scattering relation u�out�i � ~Siju

�in�
j . We obtain

Sij � ~Sij �
~Si�N�1�

~S�N�1�j

e�2i
 � r
; i; j � 1 . . .N; (1)

with r � ~S�N�1��N�1� the backscattering amplitude in the
extended picture. One can verify that S, defined by (1), is
unitary provided that ~S is unitary. The relation between S
and ~S is illustrated graphically in Fig. 1(b).

We emphasize that the parameters r and 
 which
appear together in Eq. (1) and below describe different
physics and, in particular, arise on different length scales.
The phase shift 
 is a constant determined by the effects
within a screening length from localized hole. In con-
trast, the quantity r, describing transport in the interior of
the dot, is sensitive to the dot shape, and thus is tunable.

The utility of the 
-dependent S matrix (1) can be
assessed by using the result for the orthogonality catas-
trophe with nonseparable scatterer. In the latter problem,
one is interested in the overlap of the many-body ground
states with different S � S0;1. A general formula for the
overlap exponent was derived in Ref. [19]:

h1j0i � e���2=2� lnN; �2 �
trg�g

�2��2
; g� lnS1S

�1
0 ; (2)

with N the number of particles per scattering channel.
For two different phases 
, 
0 in (1), the compound

matrix R � S�
0�S�1�
� that appears in (2) is equal to
S S = S
~

a)

e

b)

Localized state

 2i δ

FIG. 1. (a) An open quantum dot weakly coupled to a small
closed dot which holds a localized electron that can tunnel into
the open dot. (b) Relation of the open dot S matrix S and an
auxiliary matrix ~S is illustrated. The latter describes the dot
with an extra open channel added to incorporate backscattering
on the small dot charge state.
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Rij�
ij�
�
U�
�
U�
0�

�1
�
vi vj; U�
��

e�2i
�r

e�2i
r�1
; (3)

with vi � ~S�N�1�i�1� jrj2��1=2, i � 1 . . .N, the normal-
ized column of ~S. Remarkably, R differs from a unit
matrix only by a matrix of rank one. It means that,
despite the complex dependence (1) on the scattering
phase 
 that appears to affect the entire N � N matrix
S, the orthogonality problem is effectively a single-chan-
nel-like. The overlap h0j1i is described by Eq. (2) with

� �
1

2�
Im ln

�
U�
�
U�
0�

�
: (4)

Thus � depends on transport in the dot solely via the
backscattering amplitude r. Both the modulus of r and its
phase, being functions of the dot shape and dot-lead
transmissions, are under experimental control, and thus
� can be tuned to any value in the interval 0< �< 1.

We analyze the FES problem below for the scatterers
(1), and find a relation between the FES and the orthogo-
nality exponents identical to the single-channel case,

� � 2�� �2: (5)

This is not entirely unexpected, given that the above
analysis reveals hidden single-channel character of the
orthogonality problem. However, since the canonical FES
theory [9,10] is limited to the separable scatterer situ-
ation, the relation (5) cannot be deduced directly. Instead,
we shall develop an approach for a generic S matrix, and
then specialize to the quantum dot case (1).

Turning to the analysis of the FES problem, we con-
sider the tunneling electron Green’s function [9,10]

G��� � tr� ̂�0�e�iH 1� ̂��0�eiH 0��̂e�; (6)

with interaction included in the Hamiltonians H0;1

which describe electron scattering by the charged/un-
charged localized state. Here  ̂��� �

P
�u�â���� is the

operator of a tunneling electron with â� labeled by energy
and scattering channel, while �̂ is electron density matrix

�̂ e �
1

Z
exp

�
��

X
�

��â�� â�

�
; ��1 � kBT; (7)

with the normalization factor Z �
Q
��1� e�����. The

original approach [10] employs a diagrammatic expan-
sion of (6) and, using the closed loop calculus, expresses it
through electron Green’s function describing time-
dependent scattering at 0< t < �. Then the series for
the Green’s function are resummed in order to replace
the scattering potential by the S matrix. The resummed
series, treated using Dyson equation in the time domain,
lead to a singular integral equation that can be solved
using a particular variety of the Wiener-Hopf method.

Here we proceed differently, trying to avoid the dia-
grammatic expansion altogether. This has a twofold ad-
vantage. First, we shall be able to introduce the single-
particle S matrices at an early stage of the calculation,
126802-2
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FIG. 2 (color online). Schematic forward and backward scat-
tering time evolution e�iĥ1�eiĥ0�, with ballistic transport out-
side the scattering region. The compound S matrix R � S1S

�1
0

accounts for sequential scattering described by the S matrices
S0;1 corresponding to the Hamiltonians ĥ0;1.
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thereby bypassing the resummation problem. Second, our
approach will apply to noncommuting S matrices.

As a first step, we use the commutation relations

â�
� �̂e � e����̂eâ

�
� ; â�� eiH 0� � e�i���eiH 0�â�� (8)

to rewrite Eq. (6) as

G����
X
�;�0

u�0u�e���0e�i��0�tr�e�iH 1�eiH 0��̂eâ
�
�0 â��;

(9)

where �, �0 label single-particle band states.
Next, we note that the quantities e�iH 1�, eiH 0�, �̂e are

exponentials of operators quadratic in â�, â��0 , which
allows one to write their product as

e�iH 1�eiH 0��̂e � Z�1 exp
�X
�;�0

w��0 â�� â�0

�
; (10)

where the operator ŵ, defined by Eq. (10) and to be found
in an explicit form below, acts in the single electron
Hilbert space. With the help of the definition (10) the
trace in Eq. (9) can be expressed through ŵ as follows:

t r�e�iH 1�eiH 0��̂eâ
�
�0 â�� �

det�1̂� eŵ�
Z

�1̂� e�ŵ��1
��0 ;

which reduces the FES problem to analyzing the opera-
tors 1̂� e�ŵ. As we find shortly, the latter are related to
the single-particle S matrix and energy distribution. The
electron statistics is thus fully accounted for by the alge-
bra involved in the construction of the operator 1̂� eŵ

and its determinant, while the solution of the time-
dependent scattering problem amounts to computing the
inverse �1̂� e�ŵ��1. The explicit separation of the many-
body and the single-particle effects provides an efficient
treatment of the FES problem.

To make progress, we use the idea of Ref. [27] to link eŵ

with single-particle quantities. From Baker-Hausdorff
series for ln�eAeB� in terms of multiple commutators of
A and B, noting the correspondence between the commu-
tator algebra of the many-body operators quadratic in a�,
a��0 and the single-particle operators, we find

eŵ � e�iĥ1�eiĥ0�e���̂: (11)

Here the operators ĥ0;1 and e���̂ are related to the single-
particle Hamiltonian and density matrix (7) as

H0;1 �
X
��0

�ĥ0;1���0a��a�0 ; e���̂ � e����
��0 : (12)

With the help of the result (11), defining n̂ � �1� e��̂��1,
the determinant det�1� eŵ� can be brought to the form

det�1� eŵ� � Z det�1� n��� � e�iĥ1�eiĥ0�n����: (13)

The operator e�iĥ1�eiĥ0� is represented most naturally in
the basis of time-dependent scattering states constructed
as wave packets labeled by the time of arrival at the
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scatterer. As Fig. 2 illustrates, the result of backward-
and-forward time evolution is

Ŝ � e�iĥ1�eiĥ0� � 
t;t0 �
�
R; 0< t < �;
1; else;

(14)

where R � S1S
�1
0 a compound S matrix, with S0;1 the S

matrix for the charged/uncharged localized state. [For
one channel, R � e2i�
�


0�.] Thus we rewrite Eq. (13) as
det�1� eŵ� � Z det�1� �Ŝ� 1�n̂�. Similarly, writing
e�ŵ � e��̂�e�iĥ1�eiĥ0���1 � ��1� n̂�=n̂�Ŝ�1, we obtain

�1� e�ŵ��1 � f1̂� ��1� n̂�=n̂�Ŝ�1g�1; (15)

an operator in the Hilbert space of functions of time.
By multiplying Eq. (15) on the right by e��̂ � �1�

n�=n the Green’s function (9) is thus brought to the form

G��� � LeC; eC � det�1� �Ŝ� 1�n̂�; (16)

L �
X
�;�0
e�i�

0�h~u�j�1� n̂��n̂� Ŝ�1�1� n̂���1j~u�0 i; (17)

where ~u� �
P
�u�
��� ��� is a vector in channel space,

and h. . .i includes summation over scattering channels. (A
related determinant identity for eC has been known in the
theory of counting statistics [20,28].)

The factorization G��� � LeC demonstrated for a gen-
eral scattering problem with noncommuting S0;1, pro-
vides connection with Nozieres-deDominicis theory and
generalizes it to nonseparable scatterers. The two factors
in G���, expressed through single-particle quantities, in
the language of Ref [10] correspond to the contributions
of the open line and closed loop diagrams, respectively.

An explicit result for G��� now follows by noting that,
with respect to channel indices, the operators in (16) and
(17) are diagonal in the eigenbasis of R � S1S

�1
0 , where L

is additive, while eC is multiplicative. Using the standard
126802-3
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FIG. 3 (color online). The dependence (4) and (5) of the
tunneling exponent � on arg�r� for jrj � 0; 0:1; . . . 0:9; Inset:
The exponent � vs jrj for several values arg�r� marked by
arrows a–e.
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singular integral equation solution [10,19], we obtain

L � �
X
j

jujj
2 i
�
��)0=i�

2�j ; eC � e�i
*���)0=i�
�
P
j

�2j

at � < �h=T, with e2�i�j the eigenvalues of R, and )0 ’ EF
the ultraviolet cutoff. The prefactor e�i
*� describing the
localized state energy offset can be discarded.

In the case of our primary interest (3), R has only one
nontrivial eigenvalue e2�i�, given by (4), and ui is an
eigenvector vi. This gives G��� / ���1���2 , leading di-
rectly to the result (5). The dependence of the FES ex-
ponent � on jrj and argr is displayed in Fig. 3.

The effect of mesoscopic fluctuations on FES can be
described by drawing ~S from a Wigner-Dyson ensemble
of matrices of size �N � 1� � �N � 1�, orthogonal, uni-
tary or simplectic, depending on the symmetry. The
backscattering amplitude r, being a diagonal matrix ele-
ment of ~S, has a distribution [29] P�r� / �1� jrj2�- with
- � N � 1; �N � 2�=2; 2N � 2 for the three ensembles.
This generates an FES exponent distribution of width ’

-�1=2 which is small at large N. For fixed modulus jrj, the
change of the FES exponent can be of either sign depend-
ing on the phase . � arg�r� (Fig. 3). The effect of scat-
tering is particularly prominent at jrj approaching 1,
where the FES is strongly enhanced for the phase values
. between 
 and 
0, and suppressed otherwise, which
corresponds to resonance formation in the dot.

In summary, this Letter presents an exact solution of
the Fermi-edge resonance problem for noncommuting
scatterers, relevant for tunneling in mesoscopic systems.
We consider an application to resonant tunneling in open
quantum dots and show that a resonance with tunable
interaction strength, and thus with a variable power law
126802-4
exponent, can be realized. The resonance is strongly
enhanced by backscattering in a phase-sensitive fashion.
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