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Decay of Correlations in Fermi Systems at Nonzero Temperature
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The locality of correlation functions is considered for Fermi systems at nonzero temperature. We
show that for all short-range, lattice Hamiltonians, the correlation function of any two fermionic
operators decays exponentially with a correlation length which is of order the inverse temperature for
small temperature. We discuss applications to numerical simulation of quantum systems at nonzero
temperature.
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The locality of correlation functions is a fundamental
property of a quantum system, with great practical im-
portance in density functional theory simulation of quan-
tum systems [1]: if the correlation functions are short-
ranged, then one can develop fast methods O�N� for
simulating a system by solving it in local regions [2,3].
How, though, can we know a priori that the correlation
functions will be short-ranged? For quantum systems, it
was proven recently [4] that the exponential decay in
space of connected correlation functions follows from
the existence of a gap between the ground and first excited
states. If instead the gap vanishes, as occurs at a quantum
phase transition [5], then long-range correlations may
occur at zero temperature, while slow fluctuations of the
order parameters may give rise to exotic physical
properties.

However, another important possibility in which cer-
tain correlations will decay exponentially in space is to
consider a system at nonzero temperature. In this Letter,
we prove that correlation functions of fermionic operators
are short-ranged at nonzero temperature, and we show
that the correlation length is bounded, for small tempera-
ture, by a quantity that scales inversely with the tempera-
ture. The results are general, and apply to any lattice
Hamiltonian H with finite range R as defined below.
There are no periodicity requirements and no require-
ments of free or weakly interacting particles, and the
results are valid in any dimension.

Previously, it had been suggested that for noninteract-
ing particles, the correlation length would be inversely
proportional to the square root of the temperature [6].
However, later it was argued that, for certain specific
systems with free particles in periodic potentials, the
correlation length may be much larger, scaling inversely
with the temperature [7]. Thus, the results in [7] provide
an example showing in this Letter that we have, in fact,
derived the best possible bound on the scaling of the
correlation length with temperature for small
temperature.

It is important that we consider fermionic operators; in
contrast, bosonic operators may develop long-range order
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at nonzero temperature. To define what is meant by fer-
mionic and bosonic operators, we first define, for each
lattice site, various fermionic and bosonic operators
which act only on that site. Possible examples of fermi-
onic operators on a site i include electron creation and
annihilation operators,  y

i ;  i; examples of bosonic op-
erators may include spin operators, phonon operators, etc.
The defining property of an operator on a single site being
fermionic or bosonic is that operators on different sites
anticommute with each other if they are both fermionic,
while they commute with each other if at least one of the
operators is bosonic. In general, we define an operator A
to be fermionic if A can be written as a sum of products of
single-site operators, where each product includes an odd
number of fermionic single-site operators. Thus,  i and
 i 

y
j  k are all allowed fermionic operators.

We define the correlation function at inverse tempera-
ture 
 by hABi
 � Z�1Tr�AB exp��
H�	, where Z 


Tr�exp��
H�	. The trace is taken in the grand canonical
ensemble. Then, we show that if A and B are fermionic
operators separated by distance l then

hABi
 � cjjAjj jjBjj exp��l=��; (1)

where c is a constant and, for large 
, the correlation
length � is of order v
, with v a characteristic velocity of
the system. Here, we define the distance l between opera-
tors to be the shortest distance between any pair of sites
i; j where some operator on site i appears in A and some
operator on j appears in B.

The finite range condition is defined following [4,8]:
we require that we can write H 


P
iH i, where i ranges

over lattice sites, and where the commutator �H i; O	 
 0
for any operator O which only acts on sites j, which are
more than a distance R from site i, and where, for some
constant J, jjH ijj � J for all i. These conditions are
sufficient to enforce the requirement of a finite group
velocity below. As an example of the finite range, a
hopping term  y

i  j in the Hamiltonian H i is allowed
if site j is within range R of site i.

To prove Eq. (1), we first express the correlation func-
tion in terms of anticommutators using an integral rep-
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resentation. Then, we bound the anticommutators using
the finite group velocity [9].

Integral Representation of Correlation Function.— Let
A have matrix elements Aij in a basis of eigenvectors of
H , where states i; j have energies Ei; Ej, respectively. Let
the operator A! have matrix elements �A!�ij 
 Aij��Ei �
Ej �!�. Note that A 


R
d!A!.

The expectation value hA!Bi
 
 Z�1P
i;j��Ei � Ej �

!�AijBji exp��
Ei�. Similarly, hBA!i
 
 Z�1P
i;j��Ei�

Ej�!�BjiAij exp��
Ej�. However, ��Ei�Ej�!�
exp��
Ej�
��Ei�Ej�!�exp��
Ei�exp�
!�. Thus,
hBA!i
 
 hA!Bi
 exp�
!�. Therefore,

hA!Bi
 

1

1� exp�
!�
hfA!; Bgi
: (2)

It was essential to use the grand canonical ensemble to
derive this relation: if instead we worked in the canonical
ensemble with a fixed number, N, of particles, then in the
definition of hA!Bi
 as a sum over states i; j, we would
require that state i had N particles while in the definition
of hBA!i
 we would instead require that state j had N
particles. If the operator A changes the number of parti-
cles, we would not be able to relate these two expectation
values as simply as was done above.

Next, we use �1� exp�
!�	�1 
 1=2�
�1P
nodd�!�

in�=
��1, where the sum ranges over all positive and
negative odd n. For n > 0, we have �!� in�=
��1 

i
R
1
0 dt exp���i!� n�=
�t	. Similarly, for n < 0, we

have �!� in�=
��1 
 �i
R
1
0 dt exp��i!� n�=
�t	.

Thus,

1

1� exp�
!�

 1=2�

i



X
nodd;n>0

Z 1

0
dt exp��n�t=
�

 �exp�i!t� � exp��i!t�	; (3)

where now the sum ranges only over positive, odd n.
Now, we define the time evolution of operators

by A�t� 
 exp�iH t�A exp��iH t�. Thus, A!�t� 

exp�i!t�A!. Combining Eqs. (2) and (3), we get

hA!Bi
 
 1=2hfA!; Bgi
 �
i



Z 1

0
dt

exp���t=
�
1� exp��2�t=
�

 hfA!�t� � A!��t�; Bgi
; (4)

where we have used
P
nodd;n>0 exp��n�t=
� 


exp���t=
�=�1� exp��2�t=
�	. Finally, we integrate
Eq. (4) over ! to get

hABi
 
 1=2hfA;Bgi
 �
i



Z 1

0
dt

exp���t=
�
1� exp��2�t=
�

 hfA�t� � A��t�; Bgi
: (5)

Finite Group Velocity.— In [4,8], it was proven that if
we have a Hamiltonian obeying the finite range condition
above, then for any two bosonic operators A;B, separated
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in space by a distance l, one can bound the operator norm
of the commutator: jj�A�t�; B	jj � jjAjj jjBjj

P
jg�t; lj�,

where the sum ranges over sites j which appear in opera-
tor B, and lj is the distance from j to the closest site i in
the operator A. Here, g�t; lj� is a function with the follow-
ing properties: (1) g is symmetric in t so that g�t; l� 

g��t; l�; (2) g�t; l� � �t=t0�g�t0; l� for t < t0 and t; t0 > 0;
and (3) there exists a constant c1 such that g�c1l; l� is
exponentially decaying in l for large l with some corre-
lation length �C. Defining v 
 c�1

1 , we can view v as a
characteristic velocity of the system.

While in [4,8] only bosonic operators were considered,
for fermionic operators, a similar bound can be proven:
jjfA�t�; Bgjj � jjAjj jjBjj

P
jg�t; lj�. This proof can be

proven following the same steps as in [4] with commu-
tators replaced by anticommutators throughout.

We now combine the bound on anticommutators with
Eq. (5). The physics is as follows: Eq. (4) gives the
correlation function as an integral over time. However,
for times t large compared to 
, the integral is cut off by
the exponential; however, for times t of order 
 or less,
the anticommutator of Eq. (4) is small for l large com-
pared to v
.

More precisely, note that since A;B are separated by a
distance l, then fA;Bg 
 0. Thus,

jhABi
j � j
i



Z c1l

0
dt

exp���t=
�
1� exp��2�t=
�

hfA�t�

�A��t�; Bgi
j � j
i



Z 1

c1l
dt

exp���t=
�
1� exp��2�t=
�

 hfA�t� � A��t�; Bgi
j: (6)

Note that jhfA�t� � A��t�; Bgi
j � 4jjAjjjjBjj. Thus,
the integral over times t > c1l in Eq. (6) is bounded
in absolute value by 4jjAjjjjBjj
�1

R
1
c1l

exp���t=
�=
�1 � exp��2�t=
�	 � 4jjAjjjjBjj��1 exp���c1l=
�=
�1 � exp��2�c1l=
�	.

For times t < c1l, we use the bound on the anticommu-
tator: jhfA�t�; Bgi
j � jjfA�t�; Bgjj � �t=�c1l�	

P
jg�c1l; lj�.

Also, exp���t=
�=�1 � exp��2�t=
�	 � 
=�2�t�.
Thus, the integral over times t < c1l in Eq. (6) is bounded
in absolute value by jjAjj jjBjj

P
jg�c1l; lj�

Rc1l
0 

dt�2�c1l�
�1 
 �2���1jjAjj jjBjj

P
jg�c1l; lj�.

Therefore,

jhABi
j � jjAjjjjBjj
�P
j
g�c1l; lj�

2�
�

4

�


exp���c1l=
�

1� exp��2�c1l=
�

�
: (7)

Since lj � l, g�c1l; lj� decays exponentially for large l as
exp��l=�C�. Also, exp���c1l=
� decays exponentially
with correlation length v
=�. Thus, the correlation
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length � is bounded by the maximum of �C and v
=�, so
that for small temperature � � v
=�. Thus, Eq. (1)
follows.

It is interesting to compare Eq. (7) to the result found in
[4] for systems in the ground state with a gap �E between
the ground and first excited states. There, the resulting
correlation length was the maximum of �C and 2v=�E.

Importance of Lattice Structure.— This bound was
derived for systems with a lattice structure. To illustrate
the importance of a lattice, consider free fermions on a
lattice in one dimension, with Hamiltonian t y

i  i�1 �
H:c: The Fermi velocity depends on filling, and is maxi-
mum at half-filling. Thus, the Fermi velocity can be
bounded, and is at most of order t. Now, consider free
fermions in free space one dimension, with Hamiltonian
 y�x��@2=�2m�	 �x�. The Fermi velocity again depends
on the particle density, but can be increased without limit
as the particle density is increased.

This is the physical reason why, for systems which are
not on a lattice, one cannot (without knowing more about
the density and other details of the system) bound the
anticommutator. One cannot, from the Hamiltonian
alone, provide a velocity v such that the anticommutator
fA�t�; Bg is small for t < l=v.

Discussion.— We have proven a bound on the correla-
tion of fermionic operators on nonzero temperature,
Eq. (7). There are specific examples [7] which show that
this bound on the scaling of the correlation length with
temperature is the best possible (although the prefactor
v=� in the correlation length � 
 v
=� might not be the
best possible). Similarly, while it had been shown that for
periodic, noninteracting insulators in one dimension, the
correlation length scales inversely with the square root of
the gap [10]; there are again specific examples of non-
interacting systems [7] which show that the bound [4] on
the scaling of the correlation length with the gap is also
126402-3
the best possible. The case of the canonical, as opposed to
grand canonical, ensemble is an interesting future prob-
lem. Another interesting future problem is whether this
result implies a finite entanglement length [11].

In addition to the basic interest in this result in quantum
statistical mechanics, this result is of importance in
quantum simulation using density functional theory.
Also, the integral representation, Eq. (5), may prove
useful as a means of computing the density matrix for
free fermions at nonzero temperature; for these systems,
if A�0� is the fermionic creation operator on a single site
and B is a fermionic annihilation operator, then A�t� is a
sum of fermionic creation operators and the anticommu-
tator is trivial to compute. This is a matter for future
research.
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