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A system of nonlocal electron transport equations for electrostatic perturbations in (!; k) space in a
high-Z plasma is derived from the Fokker-Planck equation for arbitrary relations between the time,
space, and collisionality scales. The closed scheme for obtaining the longitudinal plasma susceptibility
��!; k� in the entire (!; k) plane is proposed. Regions in the (!; k) plane have been mapped for problems
such as the relaxation of the local temperature enhancement with a time-dependent heat conductivity.
The electron dielectric permittivity has been calculated over the entire range of parameters, including
the transition region between Vlasov and Fokker-Planck equation solutions.
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Solution of a kinetic equation by reduction to the
closed system of hydrodynamic equation is a fundamen-
tal problem in statistical description of plasmas that also
arises in the kinetic theory of many-body systems in
condensed matter or nuclear physics. We present such a
solution for an electron plasma which is close to thermo-
dynamical equilibrium and which responds to perturba-
tions at arbitrary length and time scale variations. A
complete dielectric function, ��!;k� and nonlocal and
nonstationary closure relations for the transport theory
based on the solution to the Fokker-Planck (FP) equation
are obtained.

The linear theory of nonlocal transport [1] is based on
the rigorous procedure of solving the FP equation. The
method assumes a local Maxwellian distribution function
at the initial time (cf. Ref. [2]) and produces an electron
distribution function (EDF) in terms of thermodynami-
cal forces and initial perturbations of density, �n�0�, and
temperature, �T�0�. Closure relations eliminate initial
values �n�0�, �T�0� and provide transport relations for
higher moments of the EDF. To date, this scenario has
been realized with the assumption of a stationary plasma
response. It is clear, however, from the study by Brunner
et al. [3] that the relaxation of short-wavelength periodic
temperature perturbations require a time-dependent ther-
mal conductivity. Our Letter presents the generalization
of nonlocal transport theory [1] to time-dependent prob-
lems. The published results regarding high-frequency
collisional electrostatic perturbations [4–6] and the
transport formulation of the collisionless plasmas [7]
have already used a similar approach in a limited regime
of parameters. From transport relations and specifically
from the generalized Ohm’s law, one finds the plasma
dielectric function as shown for different regimes of
parameters in Refs. [1,7–9]. The dielectric properties of
the collisional plasma are constantly being examined
[10,11] in the transition region between weakly collisional
and Vlasov limits. Our results will allow for such studies
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without involving simplified models of particle
collisions.

The electron FP equation is linearized about a
Maxwellian distribution function, F0, with immobile
ions. We consider the e-e collision operator in the
Landau form and the e-i collision operator in the
Lorentz approximation. The perturbation of the EDF is
expanded in Legendre polynomials, f �

P
1
l�0 fl�

�!; k; v�Pl���, where � � �v � k�=�vk�. Because of the
high-Z approximation, the e-e collision term, Cee, con-
tributes only to the equation for the symmetric part of the
EDF, f0. The assumed initial EDF f�v;k; 0� is a linear-
ized local Maxwellian with perturbations in density,
�n�0�, and temperature, �T�0� [1]. The infinite system
of equations for the higher angular harmonics is reduced
to an equation for f1 by applying the summation proce-
dure [1,8,12]. The infinite sum is represented here by the
recurrence relation [6] for the renormalized collision
frequency �l,

�l � �i!�
l�l� 1�

2
�ei�v� �

�l� 1�2

4�l� 1�2 � 1

k2v2

�l�1
; (1)

where �ei�v� � 4�Zne4�=m2v3 is the velocity-
dependent e-i collision frequency, where e and n are the
electron charge and density and � is the Coulomb loga-
rithm. The expression for the first angular harmonic of
the EDF reads

f1 � �ikv	f0 � i�eE=kT�F0
=�1�v�; (2)

where the isotropic part of the EDF can be expressed in
terms of the basic functions  A,

f0 � i
eE
kT
F0 �

�
�n�0�
n

�!
eE
kT

�
 NF0 �

3�T�0�
2T

 TF0;

(3)

which satisfy the kinetic equations with different source
terms, SA,
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FIG. 1. The dependencies of real (solid lines) and imaginary
(dashed lines) parts of the transport coefficients ! and # on
!=�ei for Z � 10 and k&ei � 1.
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�
�i!�

k2v2

3�1

�
 A � F�1

0 Cee	F0 
A
 � SA; (4)

where SN � 1 and ST � v2=3v2T � 1. This equation is
solved using standard Laguerre polynomial expansion
[1,13]. The initial density and temperature perturbations
are eliminated from Eq. (3) by calculating two moments,
�n and �T, of this equation. This results in the following
expression for the symmetrical part of the EDF, in terms
of its hydrodynamical moments

f0 � i
eE
kT
F0 �

�
�n
n

� i
eE
kT

�
JTT 

N � JNT  
T

DNT
NT

F0

�
�T
T
JNN 

T � JTN 
N

DNT
NT

F0; (5)

where DCD
AB � JCAJ

D
B � JDA J

C
B . We have introduced the ve-

locity moments, JAB, of the basic functions JAB � �4�=n��R
1
0 v

2dv AF0SB which satisfy JAB � JBA as in the quasi-
static case [1].

Two first moments of the kinetic equation for the
symmetric part of the EDF, f0, lead to the hydrodynamic
equations

@�n
@t

�
i
e
k � j � 0;

@�T
@t

�
2i
3n

k �

�
q�

T
e
j
�
� 0;

(6)

where j and q are the longitudinal components of the
current density and the heat flux. From Eqs. (2) and (5) we
calculate these moments and derive the nonlocal and
nonstationary closure relations in a standard form,

j � !E� � "ik�T; q � �"TE� � #ik�T: (7)

Here, E� is the effective electric field naturally appearing
both in classical strongly collisional and nonlocal trans-
port theories E� � E� ik�T=e���n=n� �T=T�. The
transport coefficients include the electrical conductivity
!, the thermoelectric coefficient ", and the thermocon-
ductivity, #, and are given by�

!

e2
;
"
e
;
#
T

�
�

n

k2T

�
JTT
DNT
NT

� i!;
JNT � JTT
DNT
NT

� i!;

2JNT � JTT � JNN
DNT
NT

� i
5

2
!
�
:

(8)

The transport relation for the electron heat flux is often
written in terms of the current and temperature gradients,
q � ��"T=!�j� %ik�T, by using the heat conductivity
coefficient % � #� �"2=!�T. The transport relations
[Eqs. (6)–(8), ] are fully equivalent to the linearized FP
equation. An electric field, E, can be defined as an am-
bipolar field (j � 0) by the Poisson equation (cf. [6]) or
simply as a prescribed external field. According to Eq. (8),
the transport coefficients depend on three dimensionless
parameters k&ei, !=�ei, where �ei �

������������
2=9�

p
�ei�vTe� is
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the standard e-i collision frequency, and Z. We illustrate
in Fig. 1 variations of complex transport coefficients !
and # with frequency for a given k&ei.

In the classical strongly collisional limit, k&ei <
f0:06=

����
Z

p
; 0:1!=�eig, the two Laguerre polynomial ap-

proximations can be used to solve Eq. (4) and derive the
following [13]:
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0
dx exp��x2=2�

�x7�x2 � 5�l=	�ei

�i
������������
2=9�

p
!x3
: (9)

In the quasistatic limit, !< �ei, we recover the results of
Spitzer-Härm (SH) theory [14],�
!
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e
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(10)

According to Eq. (10), the imaginary parts of the trans-
port coefficients are small and increase with !. In the
opposite high-frequency limit, !� �ei, the transport
coefficients�
!

e2
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e
;
#
T

�
�

in
m!

�
1� i

�ei
!
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5

2
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�8�5ei
36!5

�
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� i
3�ei
2!

;
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2
� i

13�ei
4!

�
(11)

are almost entirely imaginary with small real
corrections.

Deviations from the classical SH results at k&ei �
0:06=

����
Z

p
[1] (cf. Figure 2) correspond to the well-known

transition to the nonlocal thermal transport regime.
Nonlocal transport is well understood in the quasistation-
ary limit, !� �ee; �ei�k&ei�4=7=Z5=7 [1,9]. From this
125002-2
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FIG. 2. The parametric plane for the electron transport co-
efficients. Numbers in square brackets refer to the list of
references.
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FIG. 3. Time evolution of the temperature in the center of a
hot spot between points A (k&ei � 10) and B (k&ei < 1) along
the dashed curve in Fig. 2. Characteristic k values correspond
to changing widths of temperature profiles as shown in the
inset.
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FIG. 4. The parametric plane for the electron permittivity.
Numbers in brackets refer to the list of references.
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region of Fig. 2 moving along vertical lines of increasing
frequency, one reaches the local in space, frequency-
dependent transport domain [13,14] marked as the
dashed region. Between this classical transport domain
and the line e-e lies the frequency dependent nonlocal
electron transport region, addressed in this Letter. The
e-e boundary, which separates the quasistationary regime
(below) from the time-dependent regime (above), is de-
fined for small k values by a maxf�ee; �ei�k&ei�4=7=Z5=7g
condition. At larger k values, this transition line is ob-
tained by direct comparison of transport coefficients
which have been calculated with and without e-e colli-
sions. Of course, none of the line boundaries drawn in
Fig. 2 indicate sharp interfaces between different trans-
port approximations. They represent transitional regions
in the !; k plane that extend for up to the order of
magnitude variation in these parameters.

Relatively simple expressions for transport coefficients
are found in the �!; k� domain where one can neglect Cee
in Eq. (4) [5], i.e., for !� �ee; �ei�k&ei�4=7=Z5=7 (above
the e-e curve in Fig. 2). In this case, the basic functions
are approximated by �N;T � 3�1SN;T=�k2v2 � 3i!�1�,
leading to the following expressions for the moments

JNN

								l�0
; JTN

								l�1
; JTT

								l�2
� 31�l

����
2

�

s Z 1

0
dx exp��x2=2�

� �x2 � 3�l=	k2v2T=�1�x�

� 3i!=x2
; (12)

(x � v=vT) that allow calculations of all transport coef-
ficients in the explicit form. Note that the e-e curve in
Fig. 2 turns up sharply at k&ei � 6Z2=3 approaching the
line ! � kvT , which separates the quasistationary and
time-dependent limits in the collisionless plasmas,
k&ei > 6Z2=3 (dotted domain in Fig. 2). This sharp in-
crease is due to large contributions of high order angular
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harmonics of the EDF for large gradients, k&ei � 6Z2=3.
In the opposite limit of k&ei � 6Z2=3, nonlocal transport
theory can be developed by using a diffusive approach,
where only f0 and f1 are taken into account [9]. In the
high-frequency and the collisionless limits, k&ei �
6Z2=3, the moments (12) depend on the parameter
!=kvT . They can be evaluated using �1 � kvTh1, where
hl�1 � �i!=kvT � x2l2=�4l2 � 1�hl [cf. Equation (1)].
After substituting this expression into Eq. (12), we re-
cover results derived by Bendib et al. [7]. In the collision-
less quasistationary case !� kvT , we obtain [1]
f!=e2; "=e; #=Tg � f2:5;�1; 4gnvT=

�������
2�

p
kT.

Because of its importance to laser produced plasmas,
we apply Eq. (6) and our closure relations to the linear
self-consistent evolution of a Gaussian temperature hot
spot. The localized temperature perturbation, �T, relaxes
along the dashed line in Fig. 2. Arrows define the direc-
125002-3
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tion of the evolution between points A and B as also
shown in Fig. 3. Different rates of �T decay in Fig. 3
are due to the changing temperature gradient and the
time-dependent transport coefficients. The closure rela-
tions (7), which are valid over the entire (!, k) plane fully
define the linear plasma response, including a dielectric
permittivity �. Using the definition � � 1� i4�j=!E �
1� ��=k2&2

De, where &De is the electron Debye length,
we obtain

���
�
1�!

�
e2n

k2T!
�

2n�!�e"�2

!2�2k2%�3i!n�

�

�1

�1� i!JNN:

(13)

In combination with our solution to the FP equation, this
is an explicit expression for the dielectric permittivity,
which is valid over the entire region of 0< k&ei <1, 0<
!<1, and for Z� 1. Until now, � has been known only
for certain domains of this parameter space. We have
summarized variations of ��!; k� in different regimes
in Fig. 4 in a manner similar to Fig. 2 for transport
coefficients. Figure 4 demonstrates the extension of clas-
sical collisional theory [13] and collisionless theory [15]
to the entire domain of �!; k�. The gray region corre-
sponds to strongly damped perturbations where Im� >
Re�. Under the solid line in Fig. 4 (rising from the left
bottom corner to the right top corner) the real part of the
electron permittivity corresponds to Debye screening:
Re� � 1� 1=�k2&2De�, and under the e-e curve, e-e colli-
sions play an important role.

In the classical collisional limit, k&ei <
0:06=

����
Z

p
; 0:1!=�ei (dashed domain in the Fig. 4), we

can derive an analytical expression for �� by substituting
Eq. (9) into Eq. (13). In the quasistatic limit, !< �ee this
gives the following expression (x � 32k2v2T=3��ei):

�� � 2x�8x� 3i!�=�16x2 � 6!2 � 47i!x�: (14)

From the dispersion relation � � 0, one can derive the
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classical collisional entropy mode ! � 2ik2%=3n with
the thermal conductivity coefficient defined through
Eq. (10). In the high-frequency limit, !� �ei, where
the electrical conductivity provides the main contribution
to the plasma response, we reproduce the well-known
result, � � 1� �!2

pe=!2��1� i�ei=!�.
In the high-frequency case !� �ee; �ei�k&ei�

4=7=Z5=7,
we recover longitudinal permittivity from Ref. [6], which
smoothly transforms to the collisionless limit (�ei ! 0),
�� � 1� �!=

���
2

p
kvT�Z�!=

���
2

p
kvT�, where Z�x� is the

standard plasma dispersion function. Figure 5 illustrates
the frequency dependence of �� in the weakly collisional
regime, k&ei � 1, and compares results of the full FP
equation solutions (dotted lines) with the plasma permit-
tivity based on the Krook model calculations [11] (dashed
lines). As described in Ref. [11], the particle density-
conserving Krook model gives the most accurate results
in this regime. Still, in the region !� �ei, the deviation
of the Krook model results from the exact solution can be
as high as factor 2 or 3.

We have derived nonlocal closure relations (in both
space and time) and dielectric permittivity for high-Z
electron plasma. This theory is equivalent to the solution
of the linear Fokker-Planck kinetic equation. It covers the
entire �!; k� space for arbitrary plasma collisionality. We
have provided practical expressions for transport coeffi-
cients and dielectric permittivity which can be applied
over the entire regime of parameters.
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