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Dynamic Correlation in Wave Propagation in Random Media
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Field spectra are analyzed to yield the time-resolved statistics of pulsed transmission through quasi-
one-dimensional dielectric media with static disorder. The normalized intensity correlation function
with displacement and polarization rotation for an incident pulse of linewidth � at delay time t is a
function only of the field correlation function, which is identical to that found for steady-state
excitation, and of ���t�, the residual degree of intensity correlation at points at which the field
correlation function vanishes. The dynamic probability distribution of normalized intensity depends
only upon ���t�. Steady-state statistics are recovered in the limit � ! 0, in which ���0 is the steady-
state degree of correlation.
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The statistics of steady-state classical wave propagation
[1–3] and electronic conductance [4] in disordered sys-
tems reflect the superposition of partial waves following
trajectories with a wide distribution of path lengths,
which is proportional to the particle time-of-flight distri-
bution. Since the lengths of trajectories increase with
time, paths cross upon themselves more frequently and
the impact of weak localization could be expected to
build in time [5–15]. This was demonstrated recently in
the observation of an increase of the coherent backscat-
tering enhancement from two to three in time-resolved
acoustic measurements in a three-dimensional elastic
body [9], and in a time-decaying leakage rate of micro-
wave radiation from a quasi-1D random dielectric sample
[12]. To achieve a systematic understanding of weak
localization in the time domain, it is essential to examine
the statistics of propagation in addition to ensemble-
averaged transport. This can be accomplished by parsing
transmission according to the delay from an exciting
pulse and studying the correlation and probability distri-
bution of intensity as a function of delay time, and finally
by relating these dynamics to steady-state statistics ob-
tained under monochromatic excitation. A dynamical
perspective on the impact of gain or loss on steady-state
statistics might be of particular interest since the distri-
bution of trajectories within the sample at a given delay is
not altered by the presence of inelastic processes, even
though the ensemble average of the temporal profile is
changed.

Nonlocal intensity correlation [16–19] leads to giant
transmission fluctuations [3,16–23] and lies at the heart
of mesoscopic physics [24]. The intensity correlation
function associated with bulk scattering versus displace-
ment or polarization rotation of a detector can be ob-
tained as C � F� �0�F� 1� [18,19,23], where
F � jFEj

2 is the square of the field correlation function.
The degree of correlation, �0, is the value of C when F
vanishes, which occurs, for example, for a polarization
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shift of 90� or for displacements much greater than a
wavelength. In the absence of inelastic processes, the
probability distributions of both intensity and total trans-
mission normalized to their respective ensemble aver-
ages, P�sab� and P�sa�, where a and b are modes of the
incident and transmitted waves, are obtained from dia-
grammatic [20] and random matrix [21] theories in terms
of the dimensionless conductance, g [25], in the diffusive
limit, g � 1. For both quantum and classical waves, g is
equal to the sum of transmission coefficients over all
input and output modes. Surprisingly, theoretical expres-
sions for P�sab� and P�sa� [20,21] closely match the
measured distributions [22] even in the presence of ab-
sorption, and even at the localization threshold, reached
when g	 1, when g is replaced by 2=3var�sa�.

In this Letter, we report microwave measurements of
the time-resolved field transmitted through random
quasi-1D dielectric samples. Remarkably, the field corre-
lation functions with displacement and polarization rota-
tion at any time are identical to those found in steady
state. We also find that the corresponding cumulant cor-
relation functions of the normalized intensity have the
same dependence upon the field correlation functions as
in the frequency domain, C��t��F����t��F�1�, with a
parameter, ���t�, expressing the degree of correlation at
time t following excitation by a Gaussian pulse of width
�. We find further that the probability distribution of
normalized intensity, P�sab�t��, has the same form as
for the steady-state transmitted intensity distribution
[20,21], but with 2=3���t� substituted for g. We find that
even in diffusive samples, at long times, ���t� reaches
values exceeding the steady-state value at the Anderson
localization threshold [26] of �0 ’ 2=3 [27]. Steady-state
statistics are found to be a limiting case of dynamic
statistics, in which the incident pulse linewidth vanishes,
� ! 0, with ���0��0. These results show that ���t� is
the essential function describing the statistics of wave
propagation.
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Spectral measurements of the field transmission coef-
ficient of microwave radiation as a function of rotation of
linear polarization and displacement are made with the
use of a vector network analyzer in ensembles of random
dielectric samples in which the wave is diffusive. The
samples are contained in a copper tube with open ends of
length L greatly exceeding its 7.3-cm diameter. New
sample realizations are produced by briefly rotating the
sample tube about its axis after each spectrum is taken.
The response to a pulse with a Gaussian temporal enve-
lope at carrier frequency �0 is obtained by Fourier trans-
forming the product of the field transmission spectrum
and a Gaussian spectral function of width �.

Polarization-selective measurements of the transmit-
ted microwave field are made with the use of a conical
horn detector [19]. The samples are composed of 0.95-
cm-diameter alumina spheres with refractive index 3.14
embedded in Styrofoam spheres of diameter 1.9 cm and
refractive index 1.04 at an alumina volume fraction of
0.068. Measurements are made in an ensemble of 10 000
alumina configurations of L � 61 cm (sample A) over
the frequency range 14.7–15.7 GHz in steps of 0.6 MHz
for a single orientation of the horn detector.
Measurements are also carried out in an ensemble of
12 000 alumina configurations of L � 90 cm (sample B)
over the frequency range 16.95–17.05 GHz in 1-MHz
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FIG. 1 (color online). (a) Transmitted intensity through a
random realization of sample A (solid curves) following inci-
dent Gaussian pulses (dashed curves) with ��7, 15, and
30 MHz. The incident pulses are centered at t�0 and shown
with the same height. (b) Absolute value of the field correlation
function of E��t�=

��������������
hI��t�i

p
with time shift for the values of � in

(a).
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steps, for seven orientations of the horn detector rotated
in steps of 15� over a 90� range. Steady-state measure-
ments of intensity correlation give �0 � 0:09 in sample A
[12] and�0 � 0:29 in sample B [19].

Examples of the temporal response to excitation pulses
with three different values of � in a single random
realization of sample A are shown in Fig. 1(a) as a
function of delay from the center of the incident pulses
in units of the diffusion time, tD��L�z0�

2=�2D, where
D�39:4 cm2=ns is the diffusion coefficient and z0 �
9:6 cm is the boundary extrapolation length [12]. The
temporal oscillations in transmitted intensity are due to
the superposition of randomly phased transmitted waves
over the bandwidth �. The width of fluctuations is seen to
be approximately equal to that of the incident pulse. This
can be expressed quantitatively via the correlation func-
tion with time shift �t of the transmitted field normal-
ized to the square root of the ensemble average of the
time-varying intensity at time t, FE�

�hE�
��t�E��t�

�t�i=
�������������������������������������
hI��t�ihI��t��t�i

p
. We find that FE�

is independent
of t. In the case of a Gaussian incident pulse of bandwidth
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FIG. 2 (color online). (a) Real part of the field correlation
function, FE����, and (b) intensity correlation function,
C�����, with polarization rotation of the transmitted wave
through sample B at the two delay times following pulsed
excitation with � � 5 MHz and for monochromatic excitation
(CW). The dashed curves are (a) FE���� � cos���� and
(b) C����; t� � F���� � ���t��F���� � 1� with the values of
���t� indicated. The solid curve is F����. The logarithm of the
average pulsed transmission through sample B for � � 5 MHz,
normalized by the average steady-state transmitted intensity, is
shown in the inset. The delay times at which correlation is
presented in the figure are indicated by vertical dashed lines.
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�, jFE�
j is found to be Gaussian with temporal width

�t � 1=�
���
2

p
��� [Fig. 1(b)]. We also find that, though

I��t� in any given realization depends strongly upon �,
hI��t�i depends only weakly upon � for t > tD, once
�> 1=�2tD.

The correlation function of the normalized transmitted
field with shift in polarization angle ��, FE����, is
shown in Fig. 2(a) for the two delay times indicated by
the vertical lines in the inset for the incident pulse of
bandwidth � � 5 MHz and for monochromatic excita-
tion. All functions are well described by the steady-state
result, FE���� � cos���� [19,28]. The corresponding in-
tensity correlation functions are shown in Fig. 2(b). These
have the form C����; t� � F���� � ���t��F���� � 1�,
with ���t� � C��90; t�.

In order to study the dynamics of spatial correlation,
spectra are taken at 50 points separated by 1.06 mm along
a line centered on the tube axis on the output surface of a
random sample of polystyrene spheres [18]. A 3-mm
antenna is aligned perpendicular to the line of displace-
ment. The polystyrene spheres of refractive index 1.59 are
packed at a volume filling fraction of 0.52 in a copper tube
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FIG. 3 (color online). (a) Real part of the field correlation
function FE��r�, and (b) intensity correlation function,
C���r�, with displacement on the output surface of a random
polystyrene sample at the two delay times following pulsed
excitation with � � 20 MHz and for monochromatic excitation
(CW). The dashed curves in (b) are C���r; t� � F��r� �
���t��F��r� � 1�, with the values of ���t� indicated. The solid
curve is F��r�. The logarithm of the average pulsed trans-
mission through the sample for � � 20 MHz, normalized by
the average steady-state transmitted intensity, is shown in the
inset. The delay times at which correlation is presented in the
figure are indicated by vertical dashed lines.
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with L � 100 cm. Measurements are made in 1380 sam-
ple realizations over the frequency range 17.2–17.8 GHz
in steps of 0.625 MHz. In this sample, �0 � 0:06.

The correlation function of the normalized transmitted
field with displacement �r, FE��r�, is shown in Fig. 3(a)
for the two delay times indicated in the inset following
pulsed excitation with � � 20 MHz and for monochro-
matic excitation. The overlap of these curves indicates
that FE��r� is independent of t and identical with the
steady-state field correlation function. The corresponding
intensity correlation functions, shown in Fig. 3(b), have
the form C���r; t� � F��r� � ���t��F��r� � 1�, with
���t� determined from the residual correlation at dis-
placements �r > 3:5 cm, except for t=tD � 4:8 when
���t� is determined from the relation, var�sab�t��� �
C��0; t� � 1� 2���t�, because noise is significant there.

The time-resolved probability distributions of normal-
ized transmitted intensity, P�sab�t��, are shown in Fig. 4
for the three samples considered, for various values of
delay time and pulse bandwidth. The steady-state inten-
sity distributions for sample B and for the polystyrene
sample are also shown. Apart from the uppermost curve,
whose values are properly given in the figure, each of the
curves is displaced by a multiple of one decade for clarity
sab
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FIG. 4 (color online). Measurements of dynamic and static
probability distributions of normalized transmitted intensity
(solid curves) for the values of t=tD, �, and �, and for the
sample type indicated. The dashed curves are given by
Eqs. (1)–(3) using the measured values of �, which is not
affected by Gaussian instrumental noise. In the case of distri-
bution (1) at long delay time (top curve), noise accounts for
nearly half the measured field. The dash-dotted curve shown
through the data is obtained by modifying Eqs. (1)–(3) to
include the effect of noise. In the cases other than (1), noise
is insignificant.
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of presentation. The dashed curves are obtained from the
expressions for the steady-state intensity distribution
P�sab� [20,21] in the limit, g � 1, and in the absence of
absorption, but with 2=3� substituted for g,

P�sab� �
Z 1

0

dsa
sa

P�sa� exp��sab=sa�; (1)

with

P�sa� �
Z i1

�i1

d�
2�i

exp��sa ������; (2)

where

���� � �2=3��ln2�
�����������������������
1� 3��=2

p
�

��������������
3��=2

p
�: (3)

The values of � for sample B and for the polystyrene
sample are obtained from the measured intensity corre-
lation functions in Figs. 2 and 3 . The values of � for
sample A are determined from the relation, C��0; t� �
1� 2���t�. In addition, for distribution (1) at long time
delay (top curve in Fig. 4), Eqs. (1)–(3) are modified to
include the effect of Gaussian instrumental noise which
accounts for nearly half the measured field; the result is
shown by the dash-dotted curve. For other distributions
noise is insignificant. Excellent agreement with measured
results is obtained in all cases. These encompass both
steady-state and dynamic propagation, in the presence
of strong and weak absorption, in the weak as well as
the strong correlation regimes, in which � exceeds its
value at the Anderson localization threshold of 2=3.

In conclusion, the time-resolved intensity correlation
function has a universal form in terms of ���t� and the
square of the time-independent field correlation function,
F. The degree of intensity correlation increases with
delay time from an exciting pulse since the increasing
density of a given trajectory, as its length increases in
time, enhances the chance that a path may intersect itself.
This overlap is responsible for both weak localization and
long-range correlation. At the same time, the probability
distribution of intensity is determined exclusively by
���t�. In the limit � ! 0, � ! �0, yielding steady-state
statistics. Thus, the time-varying degree of correlation,
���t�, is the controlling function of mesoscopic statistics.
It is, therefore, of prime importance to explore the pos-
sibility of a universal formulation of the time variation of
the degree of correlation and its relationship to spatial
localization.
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