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The Peccei-Quinn (PQ) solution of the strong CP problem requires the existence of axions, which are
viable candidates for dark matter. If the Nambu-Goldstone potential of the PQ model is replaced by a
potential V�j�j� admitting a tracker solution, the scalar field j�j can account for dark energy, while the
phase of � yields axion dark matter. If V is a supergravity (SUGRA) potential, the model essentially
depends on a single parameter, the energy scale �. Once we set � ’ 1010 GeV at the quark-hadron
transition, j�j naturally passes through values suitable to solve the strong CP problem, later growing to
values providing fair amounts of dark matter and dark energy.
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Introduction.—The solutions of the strong CP problem
proposed by Peccei and Quinn (PQ) in 1977 [1] leads to
one of the accepted models of dark matter (DM). PQ
consider the Lagrangian term

L � �
�s

2�
�G � ~G; (1)

(�s: strong coupling constant; G and ~G: gluon field tensor
and its dual) yielding CP violations in strong interac-
tions, and show that its effects are suppressed by making
� a dynamical variable, approaching zero in our cosmic
era, its residual oscillations appearing as DM [2,3].

The � dynamics is set by assuming that a complex field
� � 
ei�=

���
2

p
exists, whose evolution is ruled by a

Nambu-Goldstone (NG) potential

V�j�j� � ��j�j2 	 F2
PQ


2; (2)

which is clearly U(1) invariant. At T < FPQ (the PQ
energy scale, which shall be �1012 GeV), 
 falls into
the potential minimum so that the U(1) symmetry breaks
as � acquires different values in different horizons. When
the chiral symmetry is also broken close to the quark-
hadron transition, a further term must be added to the
effective Lagrangian, arising because of instanton ef-
fects. This term reads

V1 �

�X
q

h0�T�j 
qqj0�T�imq

�
�1	 cos��: (3)

At T ’ 0, the square brackets approach m2
�f

2
� (m�, f�:

�-meson mass, decay constant).
The choice of a NG potential is the simplest possible.

Here we explore the possibility of replacing it by a po-
tential with a tracker solution [4,5]. Instead of taking a
value ’ FPQ soon, 
 evolves over cosmological times. As
in the PQ case, the potential shall involve a complex field
� and be U(1) invariant. While 
 rapidly settles on the
tracker solution (apart of residual fluctuations) in almost
any horizon, the symmetry is broken soon by the values
taken by �, which suffers no dynamical constraints and is
0031-9007=04=93(12)=121301(4)$22.50 
therefore random, in different horizons. Later on, when a
mass term arises because of the chiral symmetry break,
dynamics becomes relevant also for the � degree of free-
dom, as in the PQ case. Here this happens while 
 still
evolves over cosmological times. Finally, in the present
epoch, 
 accounts for dark energy (DE). Hence, besides
yielding DM through its phase �, the � field introduced
to solve the strong CP problem accounts for DE through
its modulus 
.

Within this model, DM and DE will be weakly
coupled. If we take a generalization of the supergravity
(SUGRA) potential [5] as tracking potential with an
energy scale �� 1010 GeV, we find reasonable values
for today’s DM and DE densities, while � is driven to
values even smaller than in the PQ case, so that CP is
apparently conserved in strong interactions. In turn, �
may be an indication of the scale where the soft breaking
of supersymmetries occurred.

Lagrangian Theory.—The Lagrangian L ��������
	g

p
fg��@��@��	 V�j�j�g can be rewritten in terms

of 
 and �, adding also the term breaking the U(1)
symmetry, as follows:

L �
�������
	g

p
�
1

2
g���@�
@�
�
2@��@��
 	 V�
�

	m2�T;
�
2�1	 cos��
�
: (4)

Here, g�� is the metric tensor.We shall assume that ds2 �
g��dx�dx� � a2�d�2 	 �ijdxidxj�, so that a is the scale
factor, � is the conformal time; Greek (Latin) indeces run
from 0 to 3 (1 to 3); dots indicate differentiation in respect
to �. Around the energy scale �QCD (quark-hadron tran-
sition), we shall take [6]

m�T;
� ’ 0:1mo�
�

�
�QCD

T

�
3:8

; (5)

with mo�
� � m�f�=
. At T <�0:3–0:2�QCD, m�T;
�

shall already approach its low-T behavior mo�
�. The
equations of motion then read
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��� 2
�
_a
a
�

_




�
_��m2a2 sin� � 0; (6)

�
� 2
_a
a

_
� a2V 0�
� � 
 _�2; (7)

and will be mostly used with sin� ’ �. Then, energy
densities #�;
 � #�;
;kin � #�;
;pot and pressures p�;
 �

#�;
;kin 	 #�;
;pot, under the condition � � 1, are obtain-
able from

#�;kin �

2

2a2
_�2; #�;pot �

m2�T;
�

2

2�;

#
;kin �
_
2

2a2 ; #
;pot � V�
�:
(8)

The Case of the SUGRA Potential.—When � undergoes
many (nearly) harmonic oscillations within a Hubble
time, h#�;kini ’ h#�;poti and hp�i vanishes. Under such a
condition, using Eqs. (6)–(8) it is easy to see that

_# � � 3
_a
a
#� �

_m
m

#�;

_#
 � 3
_a
a
�#
 � p
� � 	

_m
m

#�:
(9)

When m is given by Eq. (5), _m=m � 	 _
=
 	 3:8 _T=T. At
T ’ 0, instead, _m=m ’ 	 _
=
. Here below, the indices �,

 will be replaced by DM, DE. Equation (9) clearly shows
an exchange of energy between DM and DE. Let us notice
FIG. 1. Densities of the different components vs the scale
factor a. Figure 1(a) magnifies the onset of the oscillation
regime. Figure 1(b) shows the low-z behavior. Figure 1(c) is a
landscape picture of the whole evolution. All abscissas are
log�a=a0�.
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that the former Eq. (9) can be formally integrated, yield-
ing #DM / m=a3. In particular, this law holds at T �

�QCD, and then

#DMa3
 ’ const; (10)

so that the usual behavior #DM / a	3 is modified by the
energy outflow from DM to DE.

Let us now assume that the potential reads

V�
� �
���4


� exp�4�
2=m2
p� (11)

and does not depend on �; in the radiation dominated era,
it admits the tracker solution


��2 � g��
��4a2�2; (12)

with g� � ���� 2�2=4��� 6�. This solution holds until
we approach the quark-hadron transition. Then, in
Eq. (7), the term 
 _�2, due to the DE-DM coupling,
exceeds a2V 0 and we enter a different tracking regime.
This is shown in detail in Fig. 1, obtained for matter
(baryon) density parameters �m � 0:3 (�b � 0:03) and
h � 0:7 (Hubble constant in units of 100 km=s=Mpc). In
particular, Fig. 1(a) shows the transition between these
tracking regimes. Figure 1(b) then shows the low-z be-
havior (1� z � 1=a), since DE density exceeds radiation
and then gradually overcomes baryons (at z� 10) and
DM (at z ’ 3). Figure 1(c) is a landscape behavior of all
components, down to a � 1. Notice, in particular, the a
dependence of #DM, occurring according to Eq. (10). In
Fig. 2 we show the related behaviors of the density
parameters �i (i � r; b; �; 
, i.e., radiation, baryons,
DM, DE).

In general, once the density parameter �DE (at z � 0)
is assigned, a model with dynamical (coupled or un-
FIG. 2. Density parameters �r;b;�;
 (radiation, baryons, DM,
DE) vs the scale factor a.
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coupled) DE is not yet univocally determined. For in-
stance, the potential (11) depends on the parameters � and
�, and one of them can still be arbitrarily fixed. Other
potentials show similar features.

In the present case, such arbitrariness no longer exists.
Let us follow the behavior of #DM, backwards in time,
until the approximation � � 1 no longer applies. This
moment must approximately coincide with the time
when � enters the oscillation regime. This occurs when

2� _a=a� _
=
� ’ m�T;
�a (13)

(see Eq. (6)). At that time, according to Eq. (10), which is
marginally valid up to there, and taking � � 1,

#DM ’ #o;DM

o


�a�
1

a3 ’ m2�T�a�; 
�a�

2�a�: (14)

The system made by Eqs. (13) and (14) owing to Eq. (12),
yields the scale factor ah when fluctuations start and the
value of � in the potential (11), as soon as #o;DM (the
present density of DM) is assigned.

The plots shown in the previous section, drawn for
�DM � 0:27, are obtained for � ’ 1:5� 1010 GeV , as
is required by Eqs. (13) and (14). In this case, ah � 10	13.
When �DM goes from 0.2 to 0.4, log10��=GeV� (almost)
linearly runs from 10.05 to 10.39 and ah steadily lays at
the eve of the quark-hadron transition. A model with DE
and DM given by a single complex field based on SUGRA
potential therefore bears a precise prediction on the scale
� for the observational �DM range. In turn, we can say
that if the soft breaking of supersymmetries occurred at a
scale slightly above 1010 GeV, �DE � 0:3 is a natural
consequence.

Evolution of Inhomogeneities.—Besides predicting fair
ratios between the world components, a viable model
should also allow the formation of structures in the world.
This matter will be treated in detail in a forthcoming
paper. Let us however outline that the model treated here
belongs to the class of coupled DE models treated by
Amendola [7], with a time-dependent coupling. In fact,
for small �’s, the r.h.s. of Eq. (7), after averaging over
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FIG. 3. Time evolution of DM and baryon fluctuations. The
top figure shows DM and baryon fluctuation evolution in this
model. The two bottom figures compare DM and baryon
fluctuation evolutions in this model (solid curve), �CDM
(dot-dashed line), coupled DE (dashed line).
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cosmological times, reads C�
�h#�ia
2 with C�
� � 1=
.

Similarly, in Eq. (9), which is already averaged, the r.h.s.
are �C�
� _
#� (C is the DE-DM coupling introduced in
[7]). Let us also outline that Fig. 2 shows a 
-MDE phase,
typical of this class of models, after matter-radiation
equivalence, as the kinetic energy of DE is non-neglegible
during the matter-dominated era.

By solving the fluctuation equations in [7] with the
above C�
�, we find the behavior shown in Fig. 3 (top).
Figure 3 (bottom) compares fluctuation evolutions in this
model (solid curves) with those in an analogous cold dark
matter model with a cosmological constant (�CDM)
(dot-dashed curves) and in a coupled DE model with
constant coupling C � 0:25

����������
8�G

p
’ hC�
�i (dashed

curves). These plots show that the linear growth factor,
from recombination to now, is significantly smaller than
in coupled DE models with constant coupling and, more
significantly, is quite close to �CDM. The essential dif-
ferences from �CDM are that (i) objects should form
earlier and (ii) baryon fluctuations keep below DM fluc-
tuations until very recently.

Discussion.—The first evidences of DM date 70 years
ago, but its nonbaryonic nature became compulsory in the
1970s, when big bang nucleosynthesis (BBNS) and cos-
mic microwave background radiation (CMBR) anisotro-
pies were studied. DE is younger, but is now required both
by supernova type Ia (SNIa) data [8], as well as by CMBR
and deep galaxy data [9,10]. Axions have been candidate
DM since the late 1970s, although various studies, as well
as the occurrence of the SN 1987a, have finally con-
strained the PQ scale around values FPQ � 1012 GeV.
Contributions to DM from topological singularities (cos-
FIG. 4. The onset of coherent axion oscillations at the eve of
the quark-hadron transition due to the increase of m�T;
�
causes the behaviors of #�;pot, #�;kin (a) and !
;� � p
;�=#
;�

(b) shown here.

121301-3



FIG. 5. 
 variations cause a dependence of the effective
axion mass on scale factor a, which is shown here.
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mic string and walls) have also narrowed the constraints
to FPQ [11]. Here they were disregarded and could cause
shifts in quantitative predictions. We shall deepen this
point in further work.

The fact that scalar fields can yield both DM or DE by
just changing an exponent in the potential stimulated the
work of various authors. A potential like (11) was con-
sidered in spintessence models [12]. According to the
choice of parameters, � yields either DM or DE.

On the contrary, in this Letter we deal with the possi-
bility that � accounts for both DE and DM, and that the
strong CP problem is simultaneously solved. As in the PQ
model, the angle � in Eq. (1) is turned into a dynamical
variable, i.e., into the phase of a complex scalar field �,
and is gradually driven to approach zero by our cosmic
epoch. Residual � oscillations yielding axions account for
DM. The critical time for the onset of coherent axion
oscillations occurs at the eve of the quark-hadron tran-
sition because of the rapid increase of m�T;
�. Here, 

replaces the constant FPQ scale. This stage is illustrated
by Figs. 4(a) and 4(b)where the behaviors of #�;pot, #�;kin,
and !
;� � p
;�=#
;� are plotted.

The novel features of this model arise because the
expectation value of 
 is not a constant FPQ, but evolves
over cosmological times; in a sense, we let FPQ evolve so
to yield DE. Such evolution modifies the friction term in
Eq. (6). The damping of � oscillations is therefore greater
and � oscillations are smaller today. Further, accordingly
to Eq. (5), the axion mass (or the oscillation frequency),
which varies fairly rapidly during the formation of 
qq
condensate, continues to evolve, over cosmological
scales, due to the evolution of the 
 field. The (low-)z
dependence of mo�
� is shown in Fig. 5. We draw the
reader’s attention on the rebounce at z� 10, whose im-
plications on halo formation could be critical [13].

Constraints on PQ axions came from z � 0 observa-
tions, which must be fulfilled by the same FPQ scale,
fulfilling also cosmological requirement. Here, 
 attains
values �mp today, so that most these constraints should
be naturally satisfied. This matter, as well as the question
121301-4
of a direct axion detection, will be deepened in further
work.

Let us outline that the choice of a SUGRA potential is
arbitrary and could be replaced by other potentials, per-
haps better approaching data at z � 0. However, using this
potential allows to appreciate the conceptual echonomy
in this approach. In the PQ approach, the FPQ scale is
assumed. Here, once � is set in a physically significant
range around the quark-hadron transition 
 naturally
passes through values enabling to solve the strong CP
problem and later naturally grows to values providing fair
amounts of DM and DE.
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