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Entropy Production of Brownian Macromolecules with Inertia
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We investigate the nonequilibrium steady-state thermodynamics of single Brownian macromolecules
with inertia under feedback control in an isothermal ambient fluid. With the control being represented
by a velocity-dependent external force, we find such an open system can have a negative entropy
production rate, and we develop a mesoscopic theory consistent with the second law. We propose an
equilibrium condition and define a class of external force, which includes the transverse Lorentz force,
leading to equilibrium.
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Modern nanotechnology allows the active control of
the position and velocity of nanodevices by a feedback
system. The system detects the positions of the nano-
devices and differentiates them in manipulating a
velocity-dependent external force applied to the nano-
devices. Recently, such a velocity-dependent feedback
control (VFC) has been accomplished to reduce the ther-
mal noise of a cantilever in atomic force microscopy
(AFM) [1] and dynamic force microscopy [2]. In [1], a
feedback system detects the velocity of the cantilever and
reduces its thermal noise by actively changing the direc-
tion and magnitude of a force controlling the cantilever
according to its motion. Another VFC experiment has
been proposed to control and manipulate a frictional
force acting on a small array of particles by limiting
the terminal velocity of the array with a terminal attrac-
tor [3]. Even though there have been many experiments
and theoretical models of VFC on nanodevices, their
thermodynamics has been lacking mainly due to the
ambiguity in the definition of heat dissipated from the
nanodevices [4,5]. This Letter introduces a thermody-
namically consistent heat [5] and provides the first rig-
orous theoretical thermodynamic analysis of VFC on
nanodevices.

As models for the above nanodevices, we study single
macromolecules under the VFC in the framework of sto-
chastic dynamics, which has been widely applied to mac-
romolecular processes, e.g., ion channels [6], motor
proteins [7], biochemical reactions [8], and nanotechnol-
ogy. It is important to study these mesoscopic macro-
molecular systems [9] operating in nonequilibrium
steady state in terms of not only stochastic dynamics
but also thermodynamics [5,10,11]. Recently, mesoscopic
nonequilibrium thermodynamics of single macromole-
cules based on Langevin dynamics has been developed
in an overdamped regime [4,12]. However, with VFC,
inertia plays a fundamental role and its explicit treatment
is necessary [5,13,14]. Hence, we investigate the relation-
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ship among entropy production, detailed balance, and
equilibrium in the presence of the inertia.

We discover a novel feature of entropy production rate
(EPR). It is shown to be composed of a positive entropy
production rate (PEPR) and an entropy pumping rate
(EPuR). The EPuR indicates how much entropy is
pumped out of or into the macromolecule by an external
agent manipulating a control force applied to the macro-
molecules. The overall entropy production can be negative
due to the EPuR term. This provides thermodynamic
origins of a macromolecular cooling mechanism [1–3].
Furthermore, our approach makes possible the develop-
ment of macroscopic nonequilibrium steady-state ther-
modynamics from a mesoscopic scale, complementary
to an approach with internal degrees of freedom that
develops mesoscopic kinetic rules (master equations)
from balance equations on a hydrodynamic scale [11].

Following the general theory of polymer dynamics [9],
the macromolecule itself (e.g., a cantilever in the AFM

experiment [1]) is described by a Hamiltonian, H�x; y� �

�i
y2i
2mi

�Uint�x�, where x � �x1; x2; . . . ; xN� and y �

�y1; y2; . . . ; yN�, with xi and yi as the 3D position and
momentum vectors of the ith hard building block of the
macromolecule, respectively.Uint�x� is the internal poten-
tial of the macromolecule, e.g, Uint�x� � kx2=2 in the
AFM experiment, with k a spring constant of the AFM
cantilever. The macromolecule is confined in an isother-
mal water bath. The random collisions between solvent
water molecules and the building blocks of the macro-
molecule are modeled by a Gaussian white noise. This is
because the building block is assumed to be much larger
than the water molecules and thus the time scales of the
two can be separated [15,16]. Using the Einstein summa-
tion rule, the Langevin equation for the ith building block
of the macromolecule located in phase space at
�Xi;x; Xi;y; Xi;z; Yi;x; Yi;y; Yi;z� at time t is
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dXi�=dt � @Yi�H�X; Y�;

dYi�=dt � �@Xi�H�X; Y� � fi��Y� � gi��X; Y�

� �j�i��j��t�;

(1)

where fi��Y� is an �-component frictional force acting on
the ith building block by the surrounding water molecules
and gi��X; Y� represents velocity- and position-dependent
control by an external agent. In the AFM experiment, the
external agent is an electric feedback circuit detecting the
motion of the cantilever and manipulating the control
force g proportional to its velocity. In this experiment,
f � ��V and g � ��V, with � and � positive constants
and V a velocity. �j�i��j� is a fluctuation force caused by
collision with water molecules, where �j� is Gaussian
white noise with h�i��t��j��t0�i � ��t� t0�����ij.
Equation (1) is studied in terms of its probability distri-
bution, P�x; y; t�, using Kramers equation [17], which is
assumed to have a unique stationary state for our system
[18,19].

Let us consider energy conservation in the Langevin
dynamics. The change of internal energy of the macro-
molecule, dH�Xt; Yt�, is the same as the work done on the
macromolecule by all the external forces; i.e.,
dH�Xt;Yt�� �g�f� �̂ 	�� 	dX. The work, dW�Xt;Yt�,
done on the macromolecule by the control force g, is g 	
dX. Then, we may identify the rest of the terms in energy
balance as heat, dQ�Xt; Yt� 
 ��f� � 	 �̂� 	 dX [5]. This
indicates how much heat is produced and dissipated to the
surrounding water heat bath from the macromolecule
located at �Xt; Yt� at time t during time interval dt for a
stochastic process. The energy balance is expressed as
dH � �dQ� dW. Note that �� 	 �̂� 	 dX denotes
�i��j�i�dXj�. From the energy balance and Eq. (1), we
derive an average heat dissipation rate,

hd�t� 
 hdQ=dti

�
Z
dxdy

�
�f 	 v�

1

2
Tr��̂�̂TM̂�1�

�
P�x; y; t�; (2)

where M̂j�i� 
 mi�ij for any �;�, with mi the mass of the
ith building block and vi� 
 yi�=mi its velocity. Its de-
tailed derivation will be presented in [20]. We note that
the stochastic integration is done in the Stratonovich
sense [17].

From Eq. (2), we find that the frictional dissipation is
related to fluctuations. It implies a fluctuation dissipation
relation [hd�t � 1� � 0] in equilibrium and its extension
in a nonequilibrium steady state far away from equilib-
rium. The average heat dissipation rate can be shown to
vanish in equilibrium by substituting the Boltzmann
distribution in Eq. (2) with the Einstein relation, T̂ 


TÎ � ̂
�1
�̂�̂T=2, where we take kB � 1 and ̂ is the

frictional coefficient, i.e.; f�y� 
 �̂ 	 v with v the ve-
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locity of the macromolecule, Î a unit tensor, and T heat
bath temperature.

Now we apply the heat dissipation rate, Eq. (2), to an
entropy balance equation. Since the above stochastic pro-
cess is Markovian, we can introduce Gibb’s entropy, S �
�
R
P�x; y; t� lnP�x; y; t�dxdy [21]. We can connect a sta-

tistical quantity, Gibb’s entropy, to a thermodynamic
quantity, heat dissipation rate, using the Einstein relation,
and find the definite form of the EPR. We find the EPR is
composed of two terms: one always positive and the other
whose sign depends on the external control force g�x; y�.
Using Kramers equation, the entropy balance equation is
derived as

dS�t�
dt

� ep��t� � epu�t� �
hd�t�
T
; (3)

with

ep��t� 
 T
�1

Z
��x; y; t� 	 J�x; y; t�dxdy; (4)

epu�t� 

Z
fry 	 g�x; y�gP�x; y; t�dxdy; (5)

hd�t� 

Z
J�x; y; t� 	 f�y�dxdy: (6)

We name ep� and epu PEPR and EPuR, respectively. � is
a thermodynamic force defined as the sum of frictional
force and Onsager’s thermodynamic force; i.e., � 


�̂ 	 �v� Try lnP�. J�x; y; t� is a thermodynamic flux
corresponding to the thermodynamic force � and is
defined by ��v� Try lnP�P, i.e., the sum of the velocity
of the macromolecule and a diffusion flow in momentum
space. Note that, as in macroscopic nonequilibrium ther-
modynamics [22], PEPR is expressed as a product of
thermodynamic force and its corresponding flux. Note
also that in the above derivation we have used a boundary
condition that the macromolecule is confined in the heat
bath.

The PEPR is always non-negative. This implies the
second law of thermodynamics. To obtain the physical
meaning of the PEPR, let an external agent manipulate a
control force dependent only on the position of the macro-
molecule, i.e., g�x�. Then the EPuR vanishes. The entropy
changes due to heat transfer and positive entropy produc-
tion in nonequilibrium. In its stationary state, the PEPR is
balanced by the heat dissipation rate hd; i.e., the macro-
molecule constantly dissipates heat to the surrounding
water heat bath. Now, let the external agent manipulate
a control force dependent on both the position and the
velocity of the macromolecule, i.e., g�x; y�. A new term
EPuR appears. This term is the average of ry 	 g�x; y�.
When ry 	 g�x; y� is positive (negative), the distribution
of the macromolecule at y in momentum space tends to be
dispersed out (contracted in) by the velocity-dependent
control force g; i.e., the EPuR has a meaning of how
much the macromolecule’s distribution in momentum
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space is affected by the velocity-dependent control force
g. In other words, it describes the amount of entropy
pumped out of (into) the macromolecule to (from) the
external agent. Since the EPuR can be negative, the over-
all entropy production can also be negative. A concrete
example is the AFM experiment [1]. The stationary dis-
tribution of the AFM cantilever is C exp���y2=2m�
Uint�=Teff�, where the effective temperature Teff [23] is
�
��� T andC is a normalization constant. EPR and the heat
dissipation rate are calculated to be �3��=m��� �� and
�3T��=m��� ��, respectively [24]. In other words,
heat flows from water to the macromolecule constantly.
The average kinetic energy of the macromolecule is
smaller than that of the surrounding water molecules
since the control force acts like a frictional force on the
macromolecule. The kinetic energy is transferred from
the water heat bath to the macromolecule. The macro-
molecule releases the transferred energy to the external
agent. Let the external agent be an electric circuit con-
nected to a charging battery with infinite storage. All the
transferred energy to the electric circuit can be stored in
the battery. Now, the second law of thermodynamics
seems to be violated. This violation stems from the cal-
culation of the entropy of a portion of a whole system; the
electric circuit and the macromolecule must be viewed as
one whole system since they are strongly coupled by a
feedback system that detects the velocity of the macro-
molecule and requires the control force be proportional to
the velocity (see Fig. 1). This combined system acts like a
refrigerator: the macromolecule and the electric circuit
act as cooled air and an engine part of the refrigerator,
respectively. If the charging battery is disconnected from
the electric circuit, the refrigerator takes heat ( � dQ)
away from the water heat bath and dissipates it outside the
electric circuit while also dissipating the work (dWRWS)
done on the refrigerator, i.e., the work needed to run the
electric circuit by detecting the velocity of the macro-
molecule and requiring the velocity-dependent force.
With the refrigerator connected to the charging battery,
a portion of the work (dWRWS) done on the refrigerator
Water Heat
Bath(T)

Room(T)

Reversible
Work Source

Electric
Circuit

Macro-
molecule

(T )eff

Refrigerator

-dQ

dQR

dWB

Battery

dWRWS

FIG. 1. A schematic diagram of a 3D macromolecule im-
mersed in a water heat bath under a control force ~g � �� ~v
and frictional force ~f � �� ~v with positive �, �. The second
law of thermodynamics and energy conservation require
dWB � dWRWS � dQ� dQR � dWRWS, where RWS stands
for reversible work source.
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and a portion of the heat ( � dQ) transferred from the
water is stored in the battery. This stored energy (dWB)
must be less than the work done on the refrigerator to
satisfy the second law of thermodynamics.

We propose that zero PEPR is equivalent to equilib-
rium; i.e., when a macromolecular system stops producing
entropy, a control force stops working on the system on
average and it becomes equilibrated. This can be seen
from the fact that the equilibrium properties, such as no
flux J � 0 and no heat dissipation hd � 0, are satisfied
[see Eqs. (4) and (6)] when PEPR vanishes. In addition,
we identify a class of the control force g leading to
equilibrium, and it is shown not to work on the macro-
molecule not only on average but also instantaneously if
the control force is independent of the heat bath
temperature.

Now, let us prove that zero PEPR guarantees
Boltzmann distribution. From Eq. (4), zero PEPR is
equivalent to ry lnP � �v=T. This means that P is a
stationary distribution and is factorized into momentum-
and position-dependent parts, where the momentum-
dependent part is Gaussian with variance Tmi; i.e.,
Pss�x; y� � Px�x�Py�y�, where Py�y� � expf��Ni�1y

2
i =

2Tmig. Plugging this stationary distribution into
Kramers equation, we derive �ry 	 g� v 	 fg�
rxUint � Trx lnPxg=T � 0. This can be rewritten as ry 	
�fg�x;y��rx�Uint�x��T lnPx�x��gPy�y���0. Finally, we
derive the forms of the control force g leading to the
stationary distribution,

g�x; y� � A1�x� � A2�x; y�; (7)

where A1�x� 
 rx�Uint�x� � T lnPx�x�� and A2�x; y� is any
solution satisfying ry 	 fA2�x; y�Py�y�g � 0. Since the
separation of g�x; y� into A1 and A2 is unique [25], we
can define A1�x� as a conservative external force; i.e.,
Uext�x� 
 �Uint�x� � T lnPx�x� � C

0, where C0 is a con-
stant. Therefore, the probability distribution function
Pss�x; y� becomes C expf���Ni�1y

2
i =2mi �Uint�x� �

Uext�x��=Tg, where C is a normalization constant.
The velocity-dependent external force, A2�x; y�, leads a

system, in which a macromolecule is confined in a heat
bath, to equilibrium [26]. A magnetic force (A2i � qivi �
B�xi�) belongs to this class of forces. This class also
includes other kinds of forces such as A2i � vi �
B�xi�k�v

2
i �, vi �rvih�vi�, and �1�miv

2
iz=T�x̂i �

�mi=T�vixvizẑi with arbitrary functions k and h. The first
two forces are perpendicular to velocity so the instanta-
neous work done by these forces is zero, while the last
force is not. Thus, the instantaneous work by external
forces is not required to vanish in equilibrium. Average
work, however, vanishes; i.e., E�v 	 A2�x; y�� �R
v 	 A2�x; y�Peq�x; y�dxdy � T

R
ry 	 A2�x; y�Peq�x; y��

dxdy � Tepu � 0 from Eq. (5). In general, instantaneous
work by all temperature-independent forces, A2, vanishes
120602-3
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since A2 is perpendicular to velocity from
ry 	 A2 � A2 	 v=T � 0.

Next, we investigate the relationship between zero
PEPR and detailed balance [27]. Detailed balance stems
from the time reversal property of the Hamiltonian gov-
erning microscopic dynamics [22] and is a necessary
condition on equilibrium. However, it has been proven
that detailed balance happens to be equivalent to equilib-
rium in an overdamped system [28]. What about a system
with inertia under velocity-dependent control? We find
that detailed balance is also equivalent to equilibrium.

Detailed balance in a stationary state is expressed as

P� ~x; tj ~x0; t0�Pss� ~x0� � P�0~x0; tj0~x; t0�Pss�0~x�; (8)

where ~x 
 �x; y� and 0~x 
 �x;�y�. Here, the form of the
stationary distribution, Pss�x; y�, is not specified. From
Eq. (8), the linear operator L of Kramers equation must
satisfy

Z 1

Pss� ~x�
f1�0~x�Lf2� ~x�d~x �

Z 1

Pss� ~x�
f2�0~x�Lf1� ~x�d~x

(9)

for arbitrary f1 and f2, where d~x � dxdy, and we have
used Pss� ~x� � Pss�0~x� from the integration of Eq. (8) over
~x. Then, from Eq. (9), we derive a potential condition [29]

ry lnPss� ~x�� ��̂�̂T��1 	 f�2̂ 	v�g�0~x��g� ~x�g: (10)

If g is symmetric under time reversal, Eq. (10) is sim-
plified as ry lnPss � �v=T; i.e., the potential condition
becomes equivalent to zero PEPR. Is the control force g
symmetric under time reversal? Yes. This is because a
gravitational force and an electromagnetic force consti-
tuting the control force are symmetric under time rever-
sal. The detailed balance Eq. (8), the symmetry relation
in operator L Eq. (9), and potential condition Eq. (10) are
all equivalent in a Markovian system with Pss� ~x� �
Pss�0~x�. Therefore, the detailed balance is equivalent to
zero PEPR.

In conclusion, (i) we find that EPR can be negative
under velocity-dependent feedback control because
EPuR can be negative. (ii) We show that both zero
PEPR and detailed balance are equivalent to equilibrium.
These results furnish a thermodynamically consistent
mesoscopic theory for nonequilibrium steady state with
negative entropy pumping. (iii) We identify a class of
external forces g�x; y� that lead to equilibrium and do
no work on the macromolecule not only on average but
also instantaneously, when this force is independent of the
temperature of water heat bath.
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