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Radio Frequency Selective Addressing of Localized Atoms in a Periodic Potential
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We study the localization and addressability of ultracold atoms in a combined parabolic and periodic
potential. Such a potential supports the existence of localized stationary states and we show that
applying a radio frequency field allows us to selectively address atoms in these states. This method is
used to measure the energy and momentum distribution of the atoms in the localized states. We also
discuss possible extensions of this scheme to address and manipulate atoms in single lattice sites.

DOI: 10.1103/PhysRevLett.93.120407

Periodic potentials have been used with great success in
a series of experiments with ultracold atoms [1-4]. In
most trapping geometries, the periodic potential is ac-
companied with an additional parabolic confinement
[3,4]. For a Bose-Einstein condensate, the ground state
is not dramatically modified by the parabolic potential.
However, for the excited states of the system, the addi-
tional harmonic confinement must be taken into account.
This is especially true for atomic Fermi gases, where the
Pauli principle enforces a population of higher energetic
states. The qualitative different nature of the single par-
ticle states can be seen from recent experiments with
ultracold fermions, which have found evidence for a
localization of the atoms in such a potential [5-7]. In
the Mott insulating phase, the localization is due to the
repulsive interaction [4]. Here instead, the phenomenon is
a pure consequence of the potential shape. It is therefore
important to understand its properties and physical con-
sequences, nonetheless because the theoretical work on
quantum phase transitions involving fermions [8-11] is
mostly based on homogeneous systems [9-11]. A com-
bined periodic and parabolic potential is also interesting
for possible applications in quantum information and was
recently proposed for the implementation of a qubit regis-
ter for fermions [12]. A possible addressability of indi-
vidual atoms in single lattice sites is thereby an intriguing
vision.

In this Letter, we study ultracold atoms in a parabolic
magnetic potential that is superimposed in its weak
direction with a one-dimensional optical lattice. The
combined potential possesses two distinct classes of ei-
genstates, which—depending on their energy—either
extend symmetrically around the trap center or are local-
ized on the sides of the potential. We use a radio frequency
technique to address the atoms in localized states and to
measure the density of states along the lattice direction as
well as the momentum distribution of the atoms. Because
of the localization, the radio frequency field addresses the
atoms in a defined spatial region and we discuss the
possibility of extending this scheme to manipulate indi-
vidual atoms in single lattice sites.
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In the experiment, we prepare an ultracold cloud of
8Rb in the combined potential by forced evaporative
cooling. The magnetic trapping potential has an axial
and radial oscillation frequency of w, = 27 X 16 Hz
and w, = 27 X 197 Hz, and the optical lattice (A =
830 nm) can be adjusted between 0 < s << 10, where s
measures the potential height in units of the recoil energy
E, = h?/2mA%. The atoms are prepared in the spin-
polarized | F = 2, mp = 2) state and the temperature is
between 500 and 600 nK. Under these conditions, fermi-
ons would exhibit the same phenomenology like bosons
as long as interparticle interactions can be neglected.

To understand the properties of the combined potential
we first solve the 1D Schrodinger equation in the direc-
tion of the lattice,
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where E, is the energy of the nth eigenstate. This
Hamiltonian has also recently been studied in tight bind-
ing approximation [13,14]. In Fig. 1(a), we show a density
plot of the first 1000 eigenfunctions of (1). Each line in
Fig. 1(a) corresponds to a density plot of the wave func-
tion. For low energies we find delocalized states that
spread symmetrically around the potential minimum.
Above a threshold energy, the wave functions of the
eigenstates become localized on both sides of the poten-
tial. If we look at higher energies, a second group of
eigenstates appears, centered again around the trap mini-
mum. It is straightforward to identify this shell-like
structure with the well-known band picture for a pure
periodic potential. This becomes particularly clear if one
looks at the accessible energy values for a given position
which correspond to the calculated bandwidth E, and
band gap E,,, of a pure sinusoidal potential, only shifted
in energy by the local value of the parabolic potential. As
a direct consequence, the system does not have an abso-
lute but a spatially varying energy gap. The temperature
of the cloud is chosen so that the bandwidth of the first
band is much smaller than the average energy of the

© 2004 The American Physical Society 120407-1



VOLUME 93, NUMBER 12

PHYSICAL REVIEW

week ending

LETTERS 17 SEPTEMBER 2004

(a) 750
700

650

600
550
500
450
400

350

energy / kg (nK)

300
250
200
150

100

position (pm)

0 80
position (um)

FIG. 1 (color online). (a) Spectrum of the Hamiltonian: rep-
resentation of the 1D spectrum of the single particle
Schrodinger equation for a combined parabolic and periodic
potential with s = 3. Each line represents one eigenstate of the
system, which is plotted as density profile in gray scale. The
vertical position of the profile corresponds to the energy of the
eigenstate. (b) Cloud of atoms without rf field (upper image),
and with applied rf field (lower image) after 1.5 ms time of
flight. The parameters of the rf field are v, = 632 kHz, v, =
624 kHz. The substructure in the upper cloud is due to the finite
resolution of our imaging system.

atoms, thus providing a high population of the localized
states. In the two radial directions, the atoms occupy the
harmonic oscillator states.

We now introduce our experimental technique to pre-
pare and address the atoms in the localized states. After
the preparation of the atomic cloud in the combined
potential, a radio frequency (rf) field is applied in order
to induce spin flip transitions into Zeeman states which
are not trapped by the magnetic radial confinement. Thus,
atoms are removed from the potential if their wave
function has a spatial overlap with the magnetic field shell
defined by the resonance condition hv = ugB(r)/2.
Periodically sweeping (1 kHz rate) the radio frequency
within an interval Av = v, — vy,,, we define a spatial
region in which the atoms are removed from the potential.
After 100 ms we switch off the rf field together with the
optical and magnetic potential and the cloud is imaged
after 1.5 ms of free expansion [Fig. 1(b) lower image). We
observe two clouds of atoms, which are located at the
sides of the potential [17]. These atoms are trapped in
localized states and the result directly shows that the rf
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field is capable to address the atoms in a defined spatial
region. For comparison, we show a cloud of atoms pre-
pared under identical conditions but without applying the
rf field [Fig. 1(b), upper image). We have checked that
(i) without the optical lattice all atoms are removed from
the trapping potential and (ii) after switching off the rf
field, the atoms remain on their position in the trap if the
combined potential is kept on. Only for small lattice
heights can we observe a slow motion of the two clouds
towards the trap center. This is due to presence of colli-
sions, which allow the bosons to hop between different
localized states [6]. For a spin-polarized Fermi gas, this
effect would be absent.

In our recent work [5—-7], we were able to detect the
localization of the atoms by looking at the center of mass
position of the whole cloud. Here, we can employ this
kind of rf spectroscopy to look at the energy distribution
of the atoms in the localized states. In Fig. 2(a), we show
a series of absorption images where we have scanned the
rf field with a fixed frequency interval Av = 3 kHz.
Increasing the rf frequency, we start to remove atoms
from the center of the trap. The hole in the spatial dis-
tribution deepens until the lower frequency bound is
higher than the resonance frequency at the trap bottom:
atoms in the center are no longer removed from the
potential and we observe three clouds. For even higher
frequencies the atoms are unaffected by the field and the
two lateral clouds disappear. In Fig. 2(b), we show the
number of atoms in the left cloud in dependence on the
upper frequency of the rf field. Because of the localiza-
tion, these atoms have an axial energy which is higher
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FIG. 2 (color online). Energy distribution of localized states
in a lattice with s = 9. (a) Scan of the rf field through the cloud.
The indicated frequencies are the upper frequency v, of the
rf field; the sweep range of the rf field is 3 kHz. (b) Atom
number in the left cloud in dependence on ;. The solid line is
a fit with an axial density of states that is proportional to E~!/2
(see text).
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than E,, = 2h(v,, — ¥), where v is the resonance fre-
quency in the trap center. Thus, the number of atoms in the
cloud is determined by the density of states in the axial
direction: N o fj’;p n(E,)p.(E,dE,, where p,(E,) is the
density of states in the axial direction and n(E,) =
e Eu/ksT i the axial energy distribution. As shown in
Refs. [13,14] the density of states for energies larger
than the bandwidth of the first band is predicted to be
proportional to E~'/2. Using this value for p,(E,), we fit
our data with the above expression for N leaving the
temperature and a constant of proportionality as free
parameters [15]. The result, which is shown in
Fig. 2(b), is consistent with our data.

We now turn to the momentum distribution of the
localized states. For a potential depth of s = 3 we have
calculated the Fourier transform of the wave functions of
the eigenstates. Figure 3(a) shows the momentum distri-
bution for selected eigenstates within the first and second
band. The lowest eigenstate shows the well-known peak
structure at multiples of twice the Bragg momentum. With
increasing energy, these peaks broaden and develop a
substructure. The momentum distribution of the localized
states spreads nearly homogeneously over the first
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FIG. 3 (color online). Momentum distribution of the local-
ized states. (a) Fourier transform of selected eigenstates of the
spectrum shown in Fig. 1(a). The first three states are delocal-
ized and lie within the first band; the last state is the first state
of the second band. The states in between are localized states.
(b) Absorption images of a cloud of atoms after application of
the rf field for s =3 and s = 9. To reveal the momentum
distribution, the time of flight was chosen to be 10 ms.
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Brillouin zone (* pg), independent of the energy of the
state. Because the momentum distribution of the atoms in
the radial direction is determined by the temperature of
the ensemble, localized clouds as shown in Fig. 1(b) are
expected to exhibit an anisotropic expansion. In Fig. 3(b)
we show an absorption image of a localized cloud after
10 ms time of flight for s = 3 and s = 9. The measured
aspect ratio of 2.5 for s = 3 reveals the strong anisotropy
and proves the nonclassical momentum distribution of the
localized states. For s = 9, the cloud expands much faster
in the direction along the lattice (horizontal direction).
Indeed, we calculate a 2 times larger momentum distri-
bution for s = 9 with respect to s = 3 which leads to a
nearly isotropic expansion.

We finish this work by discussing the localization
process and its possible applications. For small lattice
heights, the localization of the atoms is prevented by
interband transitions. As an example, we show in
Fig. 4(a) an excited state for s = 0.3 whose wave function
exhibits substantial contributions from both bands.
Consequently, an atom in this state is no longer confined
within a single band. For increasing lattice height, the
extension of the localized state shrinks [Fig. 4(b)] and
approaches a minimum value which is given by the ex-
tension of the ground state in a single lattice site. For our
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FIG. 4. (a) Tunneling between the bands: density distribution
of the 594th eigenstate for a potential with s = 0.3.
(b) Extension of the localized states in the first band in
dependence on the lattice height for three different energies
(kg X 100 nK, kg X 200 nK, and kg X 300 nK).
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parameters we find that for s = 30, the eigenstates are
mainly located within a single lattice site. This result is of
particular interest because it shows that for similar ex-
perimental conditions like in the Mott insulator experi-
ment [4], a localization of the atoms within one lattice
site is possible without a repulsive interaction. Indeed,
Viverit et al[12] have shown that if an atomic Fermi gas
is loaded in a combined parabolic and periodic potential,
even an occupancy with exactly one atom per lattice site
can be achieved. Another intriguing consequence of the
localization is the addressability of single lattice sites: the
potential gradient discriminates the resonance condition
for an atomic transition in each lattice site if the transi-
tion depends on the external potential. In our setup, the
magnetic potential leads to a spatially varying Zeeman
splitting within the |F = 2)-manyfold, and thus a very
weak radio frequency should allow—in principle —for
the manipulation of the atoms within one lattice site. To
get a reasonable discrimination and a sufficiently high
Rabi frequency, the resonance condition between adjacent
lattice sites should be shifted by at least 10 kHz which
would require a gradient of 300 G/cm [16]. For this
purpose, a linear potential is more favorable than a para-
bolic one where the frequency shift is changing along the
lattice. In order to achieve well-defined experimental
conditions, it is also desirable to provide an optical con-
finement in the radial direction because otherwise, atoms
with lower axial but higher radial energy can also be
resonant with the radio frequency.

In conclusion, we have proved that atoms in a combined
periodic and parabolic potential are trapped in localized
states. We have used a radio frequency field to induce
spatially resolved spin flip transitions in order to remove
the atoms from the potential. This allowed us to measure
the axial density of states and the momentum distribution
of the localized states. The experiment has implications
in various directions. First, it shows that an inhomoge-
neous periodic potential exhibits a qualitatively different
phenomenology compared to a homogeneous system.
Second, the experiment directly evidences a new local-
ization mechanism which is a pure consequence of the
potential shape. Especially for atomic Fermi gases, such a
potential can be interesting to create single lattice site
occupancy [12]. Third, we show that the atoms can be
spatially addressed. For future experiments, it should be
possible to extend the scheme to the manipulation of
atoms in single lattice sites which would constitute a
major progress in ‘“‘quantum engineering”’ with ultracold
atoms.
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