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We investigate the Bose-Einstein condensation (BEC, superfluidity) of particle-hole pairs in ultracold
fermionic atoms with repulsive interactions and arbitrary polarization, which are trapped within
optical lattices. In the strongly repulsive limit, the dynamics of particle-hole pairs can be described by a
hard-core Bose-Hubbard model. The insulator-superfluid and charge-density-wave- (CDW) superfluid
phase transitions can be induced by decreasing and increasing the potential depths with controlling the
trapping laser intensity, respectively. The parameter and polarization dependence of the critical
temperatures for the ordered states (BEC and/or CDW) are discussed simultaneously.
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In recent years, the demonstration of Bose-Einstein
condensation (BEC) of particle-particle pairs in homo-
geneous or confined two-component (spin-1=2) fermionic
atoms has triggered great theoretical and experimental
interest. The BCS-BEC crossover in ultracold Fermi
atomic gases near a Feshbach resonance has been pre-
dicted [1], and been observed [2]. For the fermionic atoms
trapped within optical lattices, the s-wave or d-wave
particle-particle pairs can undergo a phase transition to
a superfluid state when the interaction is attractive or
repulsive [3].

With the mechanism of superfluidity of atom-atom
pairs in ultracold Fermi atomic gases being explored
more and more deeply, a question arises as to whether
the atom-hole pairs can undergo a BEC phase transition
similar to electron-hole pairs [4]. First, because of the
nonequilibrium nature of the system of particle-hole
pairs, it becomes an ideal system for exploring the non-
equilibrium quantum mechanics at the frontier of many-
body physics. Additionally, since all condensed particle-
hole pairs can emit photons in tandem, the quantum
coherence in such a condensate reveals novel optical
effects and nonlinear optical dynamics. This provides
possible applications in ultrafast digital logical elements
and quantum computation. Furthermore, the controllable
interaction strength and kinetic energy in the atomic
systems open up the very exciting potential to investigate
macroscopic quantum coherence and superfluidity under
some extreme conditions that never exist in electronic
systems.

In this Letter, we show that the atom-hole pairs in
arbitrarily polarized spin-1=2 ultracold Fermi atoms
with repulsive interaction, which are trapped within op-
tical lattices, can undergo a superfluid phase transition
similar to the ultracold bosonic atoms [5]. In the strongly
repulsive limit, the dynamics of atom-hole pairs obey a
hard-core Bose-Hubbard model. The phase transition is
analyzed with the derived Bose-Hubbard model. The
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critical temperature for the ordered states is discussed
within the mean-field theory.

Consider an ensemble of polarized ultracold fermionic
atoms occupying two different states jSi and jPi, which
are trapped within the optical lattices. For simplicity, we

assume the optical lattice potentials as Vs;p0 �x
*
� �Pd

j�1 V
s;p
0 cos2�kxj�. The wave vector k is determined by

the laser wavelengths, d ( � 1, 2, or 3) is the dimension,
and Vs;p0 are proportional to the laser intensity. For suffi-
cient low temperature, the system obeys an asymmetric
Fermi-Hubbard Hamiltonian [3]

H � �
X
hi;ji

�tsf�sifsj � tpf�pifpj� �
X
i

��snsi � �pnpi�

�U
X
i

nsinpi: (1)

Here f��i (f�i) are fermionic creation (annihilation) op-
erators for atoms in state j�i on site i, n�i � f��if�i. The
symbol hi; ji represents summing over the nearest neigh-
bors, and �s (�p) is the single-atom energy of the atoms in
state jSi (jPi). The state-dependent tunneling ts (tp) can
be induced by varying the potential depth Vs0 (Vp0 ) [6].
Usually, the tunneling strengths increase with the de-
crease of potential depths. Below the unitary limit, U is
proportional to the s-wave scattering length between
atoms occupying different states. The s-wave scattering
between atoms occupying the same state is absent due to
the Pauli blocking.

The average number of atoms per site n and the polar-
ization � of the considered system are defined as

n �
X
i

�nsi � npi�=NL; � �
X
i

�nsi � npi�=NT: (2)

The symbol NL is the total number of lattice sites, and
NT �

P
i�nsi � npi�. In the following, we focus our inter-

ests on the half-filled case (n � 1).
The ground state energy per atom depends upon both

the polarization and the energy difference (����p��s)
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between two occupied states. With the definition of po-
larization, the ground states can be divided into five
different regimes: nonpolarized (NP) ground states with
� � 0, partially polarized in state jSi (PPS) with 0<
�< 1, partially polarized in state jPi (PPP) with �1<
�< 0, fully polarized in state jSi (FPS) with � � 1, and
fully polarized in state jPi (FPP) with � � �1. For the
one-dimensional lattices (d � 1) with state-independent
hopping (ts � tp � t), these regimes can be exactly ob-
tained with the Bethe-ansatz [7]. The �� has two critical
values

��c1 �
� jUj

2 � 2t�
R
1
0

4tJ1�w�dw
w
1�exp�jUjw2t ��

for U < 0;

0 for U > 0;
(3)

and

��c2 �
� 2t� jUj for U < 0;�����������������

U2

4 � 4t2
q

� U
2 for U > 0;

(4)

corresponding to the boundaries between different re-
gimes. Here, J1�w� is the first kind of Bessel function
with first order. The nonpolarized, partially polarized,
and fully polarized regimes satisfy j��j � ��c1, ��c1 <
j��j< ��c2, and j��j 
 ��c2, respectively (see Fig. 1).

In the strongly repulsive limit (0< ts;p � U), the
Fermi-Hubbard model is equivalent to an effective
spin-1=2 Heisenberg model [8]. For the case of infinitely
repulsive limit (U=ts;p ! �1), the ground states (lowest
energy states) have only one atom for each site, and their
charge degrees of freedom are frozen. Under the strongly
repulsive condition, U=ts;p � 1, one can introduce the
bosonic operators

b�j , f�sjfpj; bj , f�pjfsj;

nj � b�j bj ,
1
2 �

1
2�nsj � npj�;

(5)

for the atom-hole pairs on site j. The operator b�j (bj)
creates (annihilates) a pair of S atom (atom in jSi) and P
hole (hole in jPi) on site j. These operators with different
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FIG. 1 (color online). Left: Ultracold fermionic atoms in one-
dimensional optical lattices with half-filling and state-
independent hopping. The dots and circles denote the atoms
and holes (no atoms), respectively. Right: Polarization regimes
of the ground states for the one-dimensional lattices with state-
independent hopping.
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lattice indices are commutable. However, to exclude the
multiple occupation at each lattice that comes from Pauli
blocking, the operators with the same lattice indices have
a property like Fermi particles. In other words, the inter-
action between bosons on the same lattice is infinitely
repulsive. Using the perturbation theory developed by
Takahashi [8] (b and b� correspond to �� and ��), up
to third order terms of the perturbation parameters (hop-
ping strengths), we obtain the atom-hole pairs that obey
the hard-core Bose-Hubbard Hamiltonian

HB � �!
X
i

ni � J
X
hi;ji

b�i bj � V
X
hi;ji

ninj: (6)

Denoting tp � "ts � "t, we obtain the hopping strength
J � 4tpts=U � 4"t2=U, the nearest-neighbor interaction
strength V � 2�t2s � t2p�=U � 2�1� "2�t2=U, and the
chemical potential ! � ��� ZV=2 � ��� Z�1�
"2�t2=U. For the cubic lattices, the total number of the
nearest neighbors Z equals 2d. The above hard-core Bose-
Hubbard model can be mapped onto an anisotropic
spin-1=2 XXZ Heisenberg model with Jxy � J, Jz � V
and an effective magnetic field Bz � �� [9]. The
antiferromagnetic-Z order, XY order, and fully magne-
tized states in the XXZ model correspond to the charge-
density-wave (CDW) phase, superfluid phase, and fully
polarized insulator phase of the atom-hole pairs, respec-
tively [9,10]. The superfluidity means the Bose condensa-
tion of atom-hole pairs in their momentum spaces.

At zero temperature, the ground states for the atom-
hole pairs have three different phases: (i) The charge-
density-wave phase similar to a solid phase with zero
polarization (� � 0) corresponds to the half-filled case of
the hard-core Bose-Hubbard model (hb�bi � 1=2),
(ii) the Bose-Einstein condensation phase corresponds
with the nonzero superfluid order parameter hbi, and
(iii) insulator phase with the largest polarization (j�j �
1) corresponds to the empty (hb�bi � 0) or the fully filled
(hb�bi � 1) case of the hard-core Bose-Hubbard model.
The difference between superfluid and insulator phases
indicates that it needs a nonfully polarized atomic gas to
support the atom-hole BEC. From the equivalence of the
hard-core Bose-Hubbard model and the spin-1=2 XXZ
Heisenberg model, using the path-integral method [11],
one can obtain that the fully polarized insulator phase
appears when j��j=U > Z�t=U�2�1� "�2, the BEC phase

exists if �Z=2��t=U�2
��������������������
�1� "2�2

p
< j��j=U < Z�t=U�2 �

�1� "�2, and the CDW phase emerges when j��j=U <

�Z=2��t=U�2
��������������������
�1� "2�2

p
. The separatrix between the

CDW phase and the BEC phase corresponds to a first
order phase transition. The points on this separatrix
show the coexistence of both phases; they represent the
supersolid phase. These conditions also show that the
CDW-superfluid and insulator-superfluid transitions occur
120406-2
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at j��j=U � �Z=2��t=U�2
��������������������
�1� "2�2

p
and j��j=U �

Z�t=U�2�1� "�2, respectively.
In Fig. 2, we show the phase diagram for lattices of

arbitrary dimensionality with hopping ratio " � 2. For
fixed values of hopping ratio", energy difference ��, and
on-site repulsive interaction strength U, increasing (de-
creasing) the hopping strength t induces an insulator-
superfluid (solid-superfluid) transition. This means that
Bose condensation of the atom-hole pairs exists for me-
diate hopping strengths. For larger (smaller) hopping
strength, the ground states fall into the phase of CDW
(fully polarized insulator). In the case of state-
independent hopping, " � 1, the CDW region becomes
a line localized at �� � 0. This is consistent with the
results of the antiferromagnetic phase in Refs. [3].

At finite temperatures, due to the thermal fluctuations,
the ordered phases are destroyed when the temperature is
above some critical temperatures. Within the framework
of the mean-field theory [12], a continuous phase transi-
tion between the CDW and the normal liquid (NL) takes
place at the critical temperature

TCCDW �
Z
kB

�1� "2�t2

U
�1� �2�; (7)

and a similar phase transition between the superfluid and
the normal liquid occurs at

TCSF �
Z
kB

2"t2

U
�

arctanh���
: (8)

Here, kB is the Boltzmann constant. The bicritical polar-
izations � � ��BC�"� (�BC > 0) are given by TCSF �
TCCDW and j � j� 1. Below the critical temperatures, there
are two coexistence regions of CDWand superfluid, which
correspond to the supersolid regions. The boundaries
between the superfluid and the supersolid and between
the CDWand the supersolid can be obtained by using the
−1.50 −0.75 0 0.75 1.50 
0

0.25

0.5

0.75

1

∆ε/(ZU) (10−2)

t/U
 (

10
−

1 )

CDW (NP SOLID) 

BEC (SUPERFLUID)

FPP (INSULATOR)

BEC (S
UPERFL

UID
)

FPS (IN
SULATOR)

FIG. 2. Zero-temperature phase diagram of the ground states
for the atom holes in arbitrarily dimensional lattices with "�
2.
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Landau expansion [13]. At zero temperature, the critical
polarization corresponding to the superfluid-supersolid
transition is given as �SFC � j�1� "�=�1� "�j. For the
case of state-independent hopping (" � 1), the critical
polarization �SFC � 0, it means that the CDW-solid and
supersolid regions shrink to a line localized at � � 0.
This indicates that the atom-hole BEC in nonpolarized
atoms with state-independent hopping has the highest
critical temperature for the superfluid phase.

The finite-temperature phase transitions rely on the
hopping ratio " and the polarization �. For state-
independent hopping (" � 1), CDW-NL and superfluid-
NL transitions occur in nonpolarized (� � 0) and polar-
ized (� � 0) cases, respectively. For state-dependent hop-
ping (" � 1), the transition routes become more complex.
The CDW-NL, supersolid-CDW-NL, superfluid-super-
solid-CDW-NL, and superfluid-NL phase transitions
take place when � � 0, 0< j�j � �SFC, �SFC < j�j<
�BC, and j�j 
 �BC, respectively.

The critical temperatures are determined by both the
parameters and the polarization. The parameter depen-
dence is similar to the one of Refs. [3], TC / t2=U. Thus,
to increase the critical temperatures, one has to decrease
the potential depths Vs;p0 to increase the hopping
strengths. The polarization dependence of the critical
temperatures and the finite-temperature phase diagram
are shown in Fig. 3 for the state-dependent hopping case
with " � 2.

The previous consideration includes only the terms up
to the third order of the perturbation parameter. Including
up to the fifth order terms, the Hamiltonian (6) reads as

HB � �!
X
i

ni � J1
X
hi;ji

b�i bj � J2
X
hhi;kii

b�i bk � V1

X
hi;ji

ninj

�V2

X
hhi;kii

nink: (9)
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FIG. 3 (color online). Mean-field finite-temperature phase
diagram for the atom-hole pairs in state-dependent hopping
case with " � 2.
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Here, hhi; kii represents summing over the next-nearest
neighbors. The parameters are determined by ! � ���

Z�V1 � V2�=2, J1 �
4tstp
U 
1�

2�t2s�t2p�
U2 �, V1 �

4tstp
U �

�
t2s�t2p
2tstp

�
t4s�t4p�6t2s t2p

2U2tstp
�, J2 �

4t2s t2p
U3 , and V2 �

4t2s t2p
U3 �3t4s � 3t4p �

4t2st
2
p�=�2t

2
st

2
p�. The corresponding critical temperatures

are formulated as

TCCDW �
Z
2kB

�V1 � V2��1� �2�; (10)

TCSF �
Z
2kB

�J1 � J2�
�

arctanh���
: (11)

Because J2 � J1 � J and V2 � V1 � V, the above equa-
tions indicate that the critical temperatures are shifted
only a little bit by the high-order terms.

In summary, we have demonstrated the existence of
Bose-Einstein condensation of atom-hole pairs in arbi-
trarily polarized ultracold fermionic atoms confined in
optical lattices with half-filling. In the strongly repulsive
limit, the atom-hole pairs obey a hard-core Bose-
Hubbard Hamiltonian. For a polarized insulator phase,
the particle-hole pairs undergo an insulator-superfluid
transition when the hopping between nearest neighbors
is increased. For a CDW phase, the pairs undergo a CDW-
superfluid transition when the hopping is decreased. The
mean-field results indicate that the finite-temperature
phase transition depends upon not only the system pa-
rameters but also the polarization.

To realize the model, one can prepare ultracold two-
component atomic Fermi gases with arbitrary polariza-
tion [2], then load them into an optical lattice with one
atom per site. The optical lattices can be produced with a
series of standing-wave lasers. Similar to the realization
of Tonks gas [14] (the physical details are only loosely
related), the strongly repulsive limit U=ts;p � 1 can be
reached by increasing the s-wave scattering length with
Feshbach resonances [15] (still below the unitary limit
[16]) and/or by decreasing the hopping strengths ts;p with
controlling the laser intensity. The applied magnetic field
also induces an energy difference between two occupied
levels due to the Zeeman effects. To observe the super-
fluidity, one can use the Bragg scattering approach to
detect the elementary excitations spectrum of cold atoms
[17]. In a condensed system of interacting atom-hole pairs
within an applied electromagnetic field, the stimulated
two-photon emission process can also give credible evi-
dence for the atom-hole BEC [18].
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