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Time-Dependent Perturbation Theory with a Classical Limit
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We construct a quantum mechanical perturbation theory which uses the multiple time scale
technique. Working with the time translation operator, we use a variant on the method of Bender and
Bettencourt. Our perturbation theory smoothly crosses over to the classical result as �h!0. It is seen that
this technique has a nonperturbative element built into it.
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In classical dynamics, one of the best known tech-
niques for handling nonlinear systems is the Poincaré-
Lindstedt perturbation theory.What would be its quantum
mechanical generalization? This is not straightforward
because the Poincaré-Lindstedt technique is predicated
on the fact that the dynamics is periodic while the quan-
tum dynamics of the expectation value of an observable
is, in general, quasiperiodic. This is true, e.g, for the
expectation value of the position operator x of an anhar-
monic oscillator governed by the Hamiltonian

H � p2=2m� 1=2m!2x2 � 1=4�x 4: (1)

The expectation value of x in an arbitrary quantum
state j��t�i can be written as hxi � h��t�jxj��t�i �P

m;nCm
	Cnhmjxjni expfi�Em�En�t= �hg, where En and jni

are the energy eigenvalue and the eigenfunction of H and
j�i has been expanded in the basis set jni. Now, the
perturbation theory comes into play and the energy ei-
genvalue can be written to O���) as En � �h!f�n�
1=2� � �3� �h=8m2!3��n2 � n� 1=2�g while the wave
function �n�x� � �n0�x� � �

P
m�ndm�m0�x�, with dm �

f �h!�n�m�g�1
R
�m0 	 x4�n0dx. To the lowest order in

�, the aperiodic part of hxi is that which comes fromP
n�CnCn�1 	 expfi�En�1 � En�g �CnCn�1

	 expfi�En�1�
En�=t= �hg�. Since En�1 � En � �h!f1� �3� �h=4m2!3�
�n� 1�g, for arbitrary � the motion will be quasiperiodic.

What should be noted from the above discussion is the
peculiar mixture of nonperturbative and perturbative
techniques in showing the quasiperiodicity. The energy
difference Emn occurring in the exponential is nonper-
turbative, while the evaluation of Emn is perturbative.
The quantum dynamics should pass over to the classical
dynamics if �h ! 0 or if En becomes large, i.e., n ! 1.
The latter is apparent from the above discussion, but the
former is not. We will show here a way of setting up
quantum mechanical perturbation theory which gives
the correct classical limit as �h ! 0.

Our technique will be to construct a quantum me-
chanical perturbation theory based on the principle of
removal of secular terms [1–4]. This is the usual way of
doing perturbation theory in classical mechanics where
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the anharmonic oscillator is handled by an expansion

x�t� � x0�t� � �x1�t� �O��2�: (2)

In this manner of doing things at O���, the equation for
x1�t� exhibits resonance which gives rise to secular terms
in perturbation theory. The removal of them rests on the
realization that the frequency of the perturbed oscillator
will be different from its unperturbed frequency !
and there will be an expansion for the frequency in the
form [5]

!	 � !� �!1 � �2!2 � : (3)

The choice of !1 will remove the resonant drive from
the equation of x1. This leads to

!1 � �3=8�A2=m!2: (4)

It is well known that secular terms [6] arise in Dirac’s
time-dependent perturbation theory in quantum mechan-
ics. One of the best known examples is the charged
oscillator in a sinusoidal electric field, i.e., the system
described by the Hamiltonian ( � e is the charge of the
oscillator)

H � p2=2m� 1=2m!2x2 � eEx cos!t: (5)

If the system is known to be in the ground state of the
simple harmonic oscillator at t � 0, then the probability
of its being in the ground state at time t is well known to
be

exp��e2E2t2=8m �h!� for t�1=!: (6)

The second order perturbation theory gives (1�
e2E2t2=8m �h!) which obviously breaks down for large
time because of the t2 term. This is the effect of the
secular term. There have been efforts to remove these
sorts of secular terms and they yield ways of forming
the perturbation series without indicating the true time
dependence given by the exponential term. The perturba-
tion theory that we will describe will not only reproduce
the exponential nature of the probability of remaining in
the ground state, but will also show that as �h ! 0
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hX�t�i � x�o� cos!t� �p�0�=m!� sin!t

� �eE=2m!�t sin!t; (7)

which is the correct classical solution of the dynamics
governed by the Hamiltonian of Eq. (5).

To set up our perturbation theory, we consider a
Hamiltonian H � H0 � �V�t�, where we treat �V�t� as
the perturbation term and H0 is the time-independent
unperturbed Hamiltonian. Instead of starting with the
Schrödinger equation, we start with the equation of mo-
tion for the time-evolution operator T. This is where we
are drawing the lesson from the initial discussion. We
choose to work with an operator that is intrinsically
nonperturbative. We recall that T � exp��iHt= �h� in the
time-independent case. The perturbation appears in the
exponential by definition. Consequently, although a per-
turbative technique for calculating T will be set up, the
nonperturbative nature will be retained. For later conve-
nience, we work with T	, which we define as

T	 � exp�iH0t= �h�T; (8)

so T	 is the time-evolution operator in the interaction
picture. The equation of motion satisfied by T	 is easily
seen to be

i �hdT	=dt � �V	T	; (9)

where

V	 � exp�iH0t= �h�V exp��iH0t= �h�: (10)

Now let us try to solve Eq. (9) directly in a perturbative
fashion by expanding

T	 � T0
	 � �T1

	 � �2T2
	 �O��3�: (11)

Clearly,

T0
	 � const: (12)

The constant can be chosen to be unity from the initial
condition. At the higher orders,

i �hdT1
	=dt � V	T0

	; i �hdT2
	=dt � V	T1

	: (13)

If V	 has a time-independent part, V0
	, then it is clear

from Eq. (13) that T1
	 can be written as

T1
	 � �iV0

	t= �h� other terms. (14)

So, T1
	 contains a term that grows linearly with time.

This is the secular term and leads to divergence in per-
turbation theory. Our method will be to treat Eq. (9) in
such a manner that secular terms do not appear. To do that
we can exploit a technique commonly used in classical
nonlinear dynamics called the multiple scale analysis [7].
If we look at Eqs. (12)–(14), we can see that T	 has the
structure 1� i�tVo

	= �h� other terms. It is when t� 1=�
that the perturbation theory breaks down. Inspection of
Eq. (13) shows that the most secular part of T2

	 is qua-
dratic in t and the leading contribution to T	 is
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��t�2V0
	=2 �h2. It is clear that a shortcut to eliminating

the secular terms will be to introduce a new time vari-
able, � � �t. Even though the exact solution T	 is a
function of t and �, multiple scales analysis seeks solu-
tions which are functions of t, �, and � treated as inde-
pendent variables. We can justify our assertion that T	

may be treated as a function of t, �, and �t in the follow-
ing way . We start with the equation of motion of the T	

operator given by Eq. (9).
Now, let V	�t� contain a time-independent part V0

	 and
a time-dependent part V	�t�. So we can write,

i �hdT	=dt � ��V0
	 � �V	�t��T	: (15)

It is very similar to the equation of motion of the original
time-evolution operator T, which is given by

i �hdT=dt � �H0 � �V�t��T; (16)

where H0 is the time-independent unperturbed
Hamiltonian. So, by analogy, we can define a second
operator T		 as

T		 � exp�i�V0
	t= �h�T	 � exp�iV0

	�t= �h�T	: (17)

T		 satisfies the equation of motion

i �hdT		=dt � �V		�t�T		; (18)

where

V		�t� � exp�iV0
	�t= �h�V	�t� exp��iV0

	�t= �h�: (19)

We can repeat the above procedure as long as the
transformed potentials contain time-independent parts.
It is clear from the form of the transformed potential,
V		�t�, that the time-independent part which comes out of
it will be at least of the first order in �. As a result, the
transformed operator T			 will have a form very similar
to T		 except that �t will be replaced by �2t and T	 by
T		. If we assume that the process stops after n steps, then
the nth transformed operator can be written in the form

T�n� � f��t; �2t; �3t; . . .�nt�T	

or

T	 � f�1T�n�:

That f is invertible is evident from its exponential
structure. We can see that T	 may be considered as a
function of �, t, and �t and they can be treated as inde-
pendent. The dependence on other variables can be
ignored as they depend on higher powers of �. So, T	

exhibits multiple-time scale behavior and it is a strictly
nonperturbative result.

We emphasize that writing T	 as a function of two time
variables is an artifice to remove secular terms; the actual
solution has t and � related by � � �t, so that t and � are
not ultimately independent.
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We can formally expand T	 as

T	 � T0
	�t; �� � �T1

	�t; �� � �2T2
	�t; �� �O��3� (20)

and the time derivative as

dT	=dt � @T0
	=@t� �@T0

	=@�� �@T1
	=dt

� �2@T1
	=@�� . . . :: (21)

Inserting the above expansion in Eq. (9) and equating
term by term, we have

i �h@T0
	=@t � 0; (22)

i �h�@T0
	=@�� @T1

	=@t� � V	T0
	; (23)

i �h�@T1
	=@�� @T2

	=@t� � V	T1
	; (24)

and so on.
From Eq. (22), it is clear that T0

	 is a function of �
alone. We are free to choose this according to our conve-
nience.We now write V	 as V0

	 �V	�t�, where V0
	 is the

time-independent part of V	 and V	�t� � V	 � V0
	 and

choose T0
	 as

i �h@T0
	=@� � V0

	T0
	: (25)

The time dependence of T1
	 is now given by (see Eq. (23))

i �h@T1
	=@t � V	�t�T0

	: (26)

The solution of this equation can be written as

T1
	 � ��i= �h�

�Z t
V	�t0�dt0

�
T0

	 � f���; (27)

where the lower limit of integration is 0 and f��� is a
function of � only, whose form will be chosen to remove
the secular term from T2

	 as shown below. The equation
of motion of the T2

	 is found to be

i �h@T2
	=@t � V	�t�

�
��i= �h�

Z t
V	�t0�dt0

�
T0

	

�

�
V0

	; ��i= �h�
Z t

V	�t0�dt0
�
T0

	

� i �hdf=d�� V	�t�f���: (28)

Now we choose f��� to remove the t-independent part
from the right-hand side of Eq. (28). This leads to the
equation

�i �hdf=d�� V0
	f��� � cT0

	��� � 0; (29)

where V0
	 is the constant part of V	�t� and c is the

t-independent part associated with T0
	���. Equation (29)

together with the boundary condition f�0� � 0 uniquely
determines f���. The same process has to be repeated at
every stage to get the full perturbation series. So T0

	 can
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be written as

T	 � exp��iV0
	�= �h� � �f��i= �h�

�Z t
V	�t0�dt0

�
T0

	

� ��i= �h�T0
	
Z �

T0
	�1cT0

	d�g �O��2�: (30)

This is the principal result and hence it is worth under-
standing the content in a different fashion. We return to
Eq. (13) and note that the nth order T	 satisfies
i �hdTn

	=dt � V	Tn�1
	. To obtain the leading order secu-

lar term, we note that the time-independent part V0
	 of

V	 is necessary and if Tn�1
	 � V0

	n�1tn�1=�n�
1�!1=�i �h�n�1 then Tn

	 � V0
	ntn=n!�i �h�n leading to T	 �

1�
P

n�
nV0

	ntn=n!�i �h�n � exp��iV0
	�t= �h�. This is ex-

actly the zeroth order answer obtained in Eq. (13), which
thus represents the sum of the most secular term at every
order of perturbation theory.

In the remainder of the Letter, we demonstrate the
efficacy of the zeroth order answer for T	. We begin
with the charged oscillator with the Hamiltonian given
by Eq. (5). The quantity V	 in this case is given by

V	 � 1=2 exp�iH0t= �h�x�exp�i!t� � exp��i!t��

 exp��iH0t= �h�: (31)

Writing x in terms of the creation and annihilation
operators a� and a of H0 and recognizing that
exp�iH0t= �h�a exp��iH0t= �h� � a�0� exp��i!t�, we find
the time-independent part of V	 to be given by

V0
	 � 1=2X�0�: (32)

From Eq. (30),

T	 � exp��iV0
	�= �h� �O��� ) T

� exp��iH0t= �h� exp��ieExt=2 �h� �O���:

Surprisingly enough, the above equation reproduces
correctly the probability of the system remaining in the
ground state at time t (for t � 1=!) if it were in the
ground state at t � 0. This probability P�t� is

P�t� � jh0j��t�ij2 � jh0jTj0ij2: (33)

The probability can be easily calculated and is given by
Eq. (6).

The operator X�t� in the Heisenberg picture is found
from

X�t� � T�1X�0�T

� X�0� cos!t� exp�ieExt=2 �h��P�0�=m!�

 sin!t exp��ieExt=2 �h�:

The second term on the right-hand side can be evaluated
by the Baker- Campbell-Hausdorff theorem to obtain

X�t� � X�0� cos!t� �P�0�=m!� sin!t

� eEt sin!t=2m!: (34)
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Taking expectation value reduces this operator expression
to the usual classical result.

We next discuss the anharmonic oscillator given by
Eq. (1). The quantity V	 is 1=4exp�iH0t=�h�x4 exp��iH0t=
�h� and to evaluate V0

	, the time-independent part of V	,
we write x in terms of the creation and the annihilation
operators of H0 to write

x4=4 � � �h2=16m2!2��a� a��4: (35)

The number operator N � a�a commutes with H0 and
hence the part of Eq. (35) which is expressible in terms of
N and the unit operator are the contributions to V0

	.
Straightforward algebra yields

V0
	 � �3 �h2=16m2!2��2N2 � 2N � 1�: (36)

Steps similar to those carried out before lead to

X�t� � expf�3=8��i� �ht=m2!2��N2 � N � 1=2�g

fX�0� cos!t� �P�0�=m!� sin!tg

 expf��3=8��i� �ht=m2!2��N2 � N � 1=2�g: (37)

We now expand the right-hand side of Eq. (37) to O���
and take the limit of �h ! 0 and compare with the corre-
sponding classical result. We find that

X�t� � X�0� cos!t� �P�0�=m!� sin!t� �3=8�

 �i� �ht=m2!2��  �N2 � N � 1=2; X�0� cos!t

� �P�0�=m!� sin!t�:

(38)

Noting that N � H0= �h!� 1=2, it is clear that as �h !
0, terms like �N;X�0�� or �N;P�0�� do not contribute and
further that only �N2; X�0�� and �N2; P; �0�� survive in the
limit of �h ! 0. In that limit to O���

X�t� � X�0�fcos!t� �3=8���=m!�X2�0�t sin!tg

� other terms in �P�0��: (39)

The expectation value of the above equation when taken
with the choice hP�0�i � 0 leads to the classical limit

Xcl�t� � A�cos!t� �3=8���=m!�A2t sin!t�; (40)
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which is to be compared with answer according to
Eqs. (3) and (4)

X�t� � A cos!	t � A cosf!� �3=8���A2m!2�gt

� A�cos!t� �3=8���A2=m!2�t sin!t�O����:

(41)

We have also checked that Eq. (37) exactly reproduces
the classical Eq. (41) in the limit �h ! 0 (taking the limit
�h ! 0 is equivalent to treating the quantum operators in
Heisenberg picture as classical dynamical variables).

Thus, our perturbation theory reproduces the correct
classical result as �h ! 0. In conclusion, we would like to
reiterate that the multiple scale perturbation theory can be
exploited to set up a general time-dependent perturbation
theory in quantum mechanics and this perturbation the-
ory has a smooth classical limit.
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