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Despite broad interest in self-organizing systems, there are few quantitative, experimentally
applicable criteria for self-organization. The existing criteria all give counter-intuitive results for
important cases. In this Letter, we propose a new criterion, namely, an internally generated increase
in the statistical complexity, the amount of information required for optimal prediction of the system’s
dynamics. We precisely define this complexity for spatially extended dynamical systems, using the
probabilistic ideas of mutual information and minimal sufficient statistics. This leads to a general
method for predicting such systems and a simple algorithm for estimating statistical complexity. The
results of applying this algorithm to a class of models of excitable media (cyclic cellular automata)
strongly support our proposal.
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The term ‘‘self-organization’’ was coined in the 1940s
[1] to label processes in which systems become more
highly organized over time, without being ordered by
outside agents or by external programs. It has become
one of the leading concepts of nonlinear science, without
ever having been properly defined. The prevailing ‘‘I
know it when I see it’’ standard prevents the development
of a theory of self-organization. Thus some say that ‘‘self-
organizing’’ implies ‘‘dissipative’’ [2], and others that
they can exhibit reversible self-organization [3,4], and no
one knows if both groups are talking about the same idea.

A definition of self-organization should be mathemati-
cally precise, so we can build theories around it, and
experimentally applicable, so we can use empirical data
to say whether something self-organizes. The goal of such
a definition should be both to match our informal notions
in easy cases, where intuition is clear and consensual, and
to extend unambiguously to intuitively hard or disputed
cases. If our informal notions allow for comparative,
‘‘more than’’ judgments, a formalization should match
those, too. Generally there are many ways to formalize a
single concept, and competing formalizations must be
judged by their scientific fruitfulness; differing formal-
izations may be appropriate in different contexts. (For
more on such methodological issues, see [5].)

We believe we have a formal criterion for self-
organization that meets the key requirements. It is pre-
cise, unambiguous, and operational. We check its con-
formity with intuition against cellular automata (CA),
specifically cyclic cellular automata. They are ideal test
cases: their dynamics are completely known (because we
specify them) and can easily be simulated exactly. They
are reasonable qualitative models of excitable media, and
there is an analytical theory [6] of the patterns they form.
We show that our definition works, at least in this case.
Two of us discussed preliminary work in [7]; here we
0031-9007=04=93(11)=118701(4)$22.50 
present the (concurring) results of larger, more extensive
simulations. Strictly speaking, we quantify system orga-
nization. In isolated systems, as in our simulations, this is
necessarily self-organization. Distinguishing self-
organization from external organization in systems re-
ceiving structured input is tricky; we discuss some pos-
sible approaches below. In any case, our subject is distinct
from ‘‘self-organized criticality’’ [8], a term labeling
nonequilibrium systems whose attractors show power-
law fluctuations and long-range correlations. We plan to
address whether such systems are self-organizing in our
sense in future work.

Measuring organization.—Few attempts have been
made to measure self-organization quantitatively.
Thermodynamic entropy is an obvious measure of orga-
nization for physicists, and several works claim to mea-
sure self-organization by finding spontaneous declines in
entropy [9–11]. But thermodynamic entropy is a bad
measure of organization in complex systems [12–14].
Entropy is proportional to the logarithm of the accessible
volume in phase space, which has no necessary connec-
tion to any kind of organization. Thus low-temperature
states of Ising systems or Fermi fluids have very low
entropy, but no discernible organization [13]. Biological
organisms are never in pure, low-entropy states, but are
organized, if anything is. Some kinds of biological self-
organization are, in fact, thermodynamically driven by
increasing entropy [12,15].

After ‘‘fall in entropy,’’ the leading idea on how to
measure self-organization, advanced in [16], is a rise in
complexity. While there are many proposed measures of
physical complexity, the general view is that complex
phenomena are ones which cannot be described concisely
and accurately (see [14] for a general survey). Most pro-
posals use algorithmic descriptions and are limited by
inherent uncomputability. Here we take a stochastic point
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of view, aiming to statistically describe ensembles of
configurations. We follow Grassberger [17] in defining
the complexity of a process as the least amount of infor-
mation about its state needed for maximally accurate
prediction. Crutchfield and Young [18] extended this con-
cept by giving operational definitions of ‘‘maximally
accurate prediction’’ and ‘‘state.’’

The Grassberger-Crutchfield-Young ‘‘statistical com-
plexity,’’ C, is the information content of the minimal
sufficient statistic for predicting the process’s future [19].
In thermodynamic settings, this is the amount of infor-
mation a full set of macrovariables contains about the
system’s microscopic state [20]. We now sketch the for-
malism allowing us to use statistical complexity to char-
acterize spatially extended dynamical systems of
arbitrary dimension, after [21].

Let x�~r; t� be an n� 1D field, possibly stochastic, in
which interactions between different space-time points
propagate at speed c. As in [22], define the past light cone
of the space-time point �~r; t� as all points which could
influence x� ~r; t�, i.e., all points � ~q; u�, where u < t and
jj ~q� ~rjj � c�t� u�. The future light cone of � ~r; t� is the
set of all points which could be influenced by what
happens at �~r; t�. l�� ~r; t� is the configuration of the field
in the past light cone, and l�� ~r; t� the same for the future
light cone. The distribution of future light cone configu-
rations, given the configuration in the past, is P�l� j l��.

Any function � of l� defines a local statistic. It sum-
marizes the influence of all the space-time points which
could affect what happens at � ~r; t�. Such local statistics
should tell us something about ‘‘what comes next,’’ which
is l�. (Reference [21] explains why we must use local
predictors and the advantages of basing them on light
cones, as first suggested by [22].) Information theory lets
us quantify how informative different statistics are.

The information about variable x in variable y is I�x; y�,

I�x; y� 	
�
log2

P�x; y�
P�x�P�y�

�
; (1)

where P�x; y� is joint probability, P�x� is marginal proba-
bility, and h�i is expectation [23]. The information a
statistic � conveys about the future is I�l�;��l���. A
statistic is sufficient if it is as informative as possible
[23], here if and only if I�l�;��l���  I�l�; l��. This is
the same [23] as requiring that P�l�j��l���  P�l�jl��.
A sufficient statistic retains all the predictive information
in the data. Decision theory [24] tells us that maximally
accurate and precise prediction needs only a sufficient
statistic, not the original data; in fact, any predictor
which does not use a sufficient statistic can be replaced
by a superior one which does. Since we want optimal
prediction, we confine ourselves to sufficient statistics.

If we use a sufficient statistic � for prediction, we must
describe or encode it. Since ��l�� is a function of l�, this
encoding takes I���l��; l�� bits. If knowing �1 lets us
compute �2, which is also sufficient, then �2 is a more
concise summary, and I��1�l��; l�� � I��2�l��; l��. A
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minimal sufficient statistic [23] can be computed from
any other sufficient statistic. We now construct one.

Take two past light cone configurations, l�1 and l�2 .
Each has some conditional distribution over future light
cone configurations, P�l�jl�1 � and P�l�jl�2 �, respectively.
The two past configurations are equivalent, l�1 � l�2 , if
those conditional distributions are equal. The set of con-
figurations equivalent to l� is �l��. Our statistic is the
function which maps past configurations to their equiva-
lence classes:

��l�� 	 �l��  f� : P�l�j��  P�l�jl��g: (2)

Clearly, P�l�j��l���  P�l�jl��, and so I�l�; ��l��� 
I�l�; l��, making � a sufficient statistic. The equivalence
classes, the values � can take, are the causal states [18–
21]. Each causal state is a set of specific past light cones,
and all the cones it contains are equivalent, predicting the
same possible futures with the same probabilities. Thus
there is no advantage to subdividing the causal states,
which are the coarsest set of predictively sufficient states.

For any sufficient statistic �, P�l�jl��  P�l�j��l���.
So if ��l�1 �  ��l�2 �, then P�l�jl�1 �  P�l�jl�2 �, and the
two pasts belong to the same causal state. Since we can
get the causal state from ��l��, we can use the latter to
compute ��l��. Thus, � is minimal. Moreover, � is the
unique minimal sufficient statistic [21]: any other just
relabels the same states.

Because � is minimal, I���l��; l�� � I���l��; l��, for
any other sufficient statistic �. Thus we can speak objec-
tively about the minimal amount of information needed
to predict the system, which is how much information
about the past of the system is relevant to predicting its
own dynamics. This quantity, I���l��; l��, is a character-
istic of the system, and not of any particular model. We
define the statistical complexity as

C 	 I���l��; l��: (3)

C is the amount of information required to describe the
behavior at that point and equals the log of the effective
number of causal states, i.e., of different distributions for
the future. Complexity lies between disorder and order
[14,17,18], and C  0 both when the field is completely
disordered (all values of x are independent) and com-
pletely ordered (x is constant). C grows when the field’s
dynamics become more flexible and intricate, and more
information is needed to describe the behavior.

We now sketch an algorithm to recover the causal states
from data, and so estimate C. (Reference [21] provides
details, including pseudocode; cf. [22].) At each time t,
list the observed past and future light cone configura-
tions, and put the observed past configurations in some
arbitrary order, fl�i g. (In practice, we must limit how far
light cones extend into the past or future.) For each past
configuration l�i , estimate Pt�l�jl�i �. We want to estimate
the states, which ideally are groups of past cones with the
same conditional distribution over future cone configu-
118701-2
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FIG. 1 (color online). Phases of the cyclic CA. Parameters are
as described in the text, started from uniform random initial
conditions. Color figures were prepared with [28]. (a) Local
oscillations �T  1�, in which the CA oscillates with period 4,
each cell cycling through all colors; (b) spiral waves �T  2�;
(c) the ‘‘turbulent’’ phase �T  3�; (d) fixation with solid color
blocks �T  4�.
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rations. Not knowing the conditional distributions
a priori, we must estimate them from data, and, with
finitely many samples, such estimates always have some
error. Thus, we approximate the true causal states by
clusters of past light cones with similar distributions
over future light cones; the conditional distribution for
a cluster is the weighted mean of those of its constituent
past cones. Start by assigning the first past, l�1 to the first
cluster. Thereafter, for each l�i , go down the list of exist-
ing clusters and check whether Pt�l�jl�i � differs signifi-
cantly from each cluster’s distribution, as determined by a
fixed-size �2 test. (We used �  0:05 in our simulations
below.) If the discrepancy is insignificant, add l�i to the
first matching cluster, updating the latter’s distribution.
Make a new cluster if l�i does not match any existing
cluster. Continue until every l�i is assigned to some clus-
ter. The clusters are then the estimated causal states at
time t. Finally, obtain the probabilities of the different
causal states from the empirical probabilities of their
constituent past configurations, and calculate C�t�. This
procedure converges on the correct causal states as it gets
more data, independent of the order of presentation of the
past light cones, the ordering of the clusters, or the size �
of the significance test [21]. For finite data, the order of
presentation matters, but we finesse this by randomizing
the order.

We say a system has organized between times t1 and t2
if (i) C�t2� � C�t1� 	 �C> 0. It has self-organized if
(ii) some of the rise in complexity is not due to external
agents. We can check condition (i) by estimating �C. We
know condition (ii) holds for many systems, because they
either have no external inputs (e.g., deterministic CA), or
only unstructured inputs (e.g., chemical pattern formers
exposed to thermal noise). For systems with structured
input, we need, but lack, a way to say how much of �C is
due to that input. We could, perhaps, treat this as a causal
inference problem [25], with �C as the response variable,
and the input as the treatment. Alternately, we could see
how much �C changes if we replace the input with
statistically similar noise [26].

Numerical experiments and results.—Having devel-
oped a quantitative criterion for self-organization, we
now check it experimentally. Our test systems are cyclic
cellular automata [6] (CCA), which are models of pat-
tern formation in excitable media [27]. Each site in a
square lattice has one of � colors. A cell of color k will
change its color to k� 1mod� if there are already at least
T (‘‘threshold’’) cells of that color in its neighborhood,
i.e., within a distance r (‘‘range’’) of that cell. Otherwise,
the cell keeps its current color. (In normal excitable
media, which have a unique quiescent state, the role of
the threshold is slightly different [27].) All cells update
their colors in parallel.

CCA have three generic long-run behaviors, depending
on the ratio of the threshold to the range. At high thresh-
olds, CCA form homogeneous blocks of solid colors,
which are completely static (‘‘fixation’’). At very low
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thresholds, the entire lattice eventually oscillates periodi-
cally; sometimes rotating spiral waves grow to engulf the
entire lattice. With intermediate thresholds, incoherent
traveling waves form, propagate, collide, and disperse;
this, metaphorically, is ‘‘turbulence.’’ With a range one
Moore (box) neighborhood and �  4, the phenomenol-
ogy is as follows [6] (see Fig. 1). T  1 and T  2 are both
locally periodic, but T  2 produces spiral waves, while
T  1 quenches incoherent local oscillations. T  3 leads
to metastable turbulence —spiral waves can form and
entrain the entire CA, but turbulence can persist indef-
initely on finite lattices. Fixation occurs with T � 4. All
CCA phases self-organize when started from uniform
noise. (This is best appreciated by viewing simulations
[28].) By the same intuitive standard, the fixation phase is
less organized than turbulence (which has dynamic,
large-scale spatial structures), which in turn is less or-
ganized than spiral waves (which has more intricate
structures). It is hard to say, by eye, whether incoherent
local oscillations are more or less organized than simple
fixation. All four regimes lead to stable stationary distri-
butions. Thus, C should start at zero (reflecting the totally
random initial conditions), rise to a steady value, and stay
there. T  2 should have the highest long-run complexity,
followed by T  3.

We ran �  4, r  1 CCA on 300� 300 lattices with
periodic boundary conditions, for T from 1 to 4. Figure 2
shows the results of applying our proposed measure of
self-organization to these simulations. We used light
cones extending one time step into both past and future;
longer light cones did not, here, lead to different states.
The agreement with expectations is clear. All four curves
climb steadily to plateaus, leveling off when the distri-
bution of CA configurations become stationary. Sampling
118701-3
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FIG. 2 (color online). Complexity over time for CCA with
different thresholds T, averaging 30 independent simulations at
each value of T. The T  2 curve has the highest asymptote,
followed by T  3, T  4, and T  1. Error bars: standard
error in the complexity.
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noise leads to fluctuations around the asymptotic values
[7]. The slight fall in complexity for T  3 occurs when
spirals try to form but break up, and their debris limit
further spiral formation. Additional simulations at dif-
ferent lattice sizes L show the estimated long-run com-
plexity growing with L, approaching a limit as O�L�1�.
This rate combines finite-size effects with the negative
bias of our information estimator, which is at least
O�L�2� [29]. We hope in the future to precisely determine
both our estimation bias and the finite-size scaling of the
complexity.

Conclusion.—A theory of self-organization should pre-
dict when and why different systems will assume differ-
ent kinds and degrees of organization. This will require
an adequate characterization of self-organization. We
argue that ‘‘internally caused rise in complexity’’ works,
if we define complexity as the amount of information
needed for optimal statistical prediction. We can reliably
estimate this statistical complexity from data, and, for
CCA, the estimates match intuitive judgments about
self-organization. The methods used are not limited to
CA, but apply to all kinds of discrete random fields,
including ones on complex networks [21]. They would
work equally well on discretized empirical data, e.g.,
digital movies of chemical pattern formation experi-
ments. This is a first step towards a physical theory of
self-organization.
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