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Ferromagnetism Mediated by Few Electrons in a Semimagnetic Quantum Dot
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A (II,Mn)VI diluted magnetic semiconductor quantum dot with an integer number of electrons
controlled with a gate voltage is considered. We show that a single electron is able to induce a collective
spontaneous magnetization of the Mn spins, overcoming the short range antiferromagnetic interactions,
at a temperature order of 1 K, 2 orders of magnitude above the ordering temperature in bulk. The
magnetic behavior of the dot depends dramatically on the parity of the number of electrons in the dot.
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Introduction.—The range, strength, and sign of ex-
change interactions between magnetic impurities in di-
luted magnetic semiconductors (DMS) depend on the
density and nature of the states at the Fermi level. Mn
doped semiconductors of the families (II,Mn)VI and
(III,Mn)Vorder ferromagnetically in the presence of car-
riers that mediate indirect exchange interactions between
Mn. In the case of (III,Mn)V compounds such as
GaAsMn, Mn acts as an acceptor supplying holes respon-
sible for the ferromagnetism below a transition tempera-
ture which depends on both Mn and hole densities [1] and
can reach 160 K [2]. In contrast, Mn does not supply
itinerant carriers in (II,Mn)VI compounds. These mate-
rials do not order ferromagnetically [3] unless further
doping with acceptors provides holes which produce fer-
romagnetism below a carrier density dependent Curie
temperature (TC) of approximately 2 K [4].

Electrical control of the carrier density, in contrast
with chemical doping, has been demonstrated in a num-
ber of DMS heterostructures, making it possible to alter
reversibly properties of the material such as the TC [5,6]
and the coercive field [7] of these systems. The fact that
the carrier density is much higher than the relative
change achieved artificially sets limits to the control. In
contrast, the number of electrons in a GaAs quantum dot
can be varied one by one, starting from zero, in single
electron transistors [8]. Single electron transistors with
nonmagnetic II-VI (CdSe) quantum dots of lateral size
smaller than 10 nm and energy level spacings of tens of
meV have also been fabricated [9]. (II,Mn)VI quantum
dots of similar size have also been grown and studied
magneto-optically by several groups [10]. Therefore, the
fabrication of a single electron transistor with (II,Mn)VI
quantum dots seems feasible and motivates this work.

We study the magnetic properties of a (II,Mn)VI quan-
tum dot with an integer number of electrons. The lateral
dimensions of the dot are smaller than 10 nm and, for the
range of Mn concentration considered, x < 0:05, the num-
ber of Mn atoms in the dot is of the order of 100 and the
number of electrically injected electrons ranges from zero
to 10. We find compelling theoretical and numerical evi-
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dence that the addition of a single electron to an otherwise
paramagnetic DMS dot is enough to couple most of the
Mn spins so that a net total magnetic moment emerges
spontaneously. Therefore, a single electron transistor with
a DMS quantum dot would switch on and off the total
magnetic moment completely in a controlled and revers-
ible manner.

Hamiltonian.—The Hamiltonian describing the system
is the zero dimensional version of the standard exchange
Hamiltonian used for both bulk [3,11] and two dimen-
sional systems [12]. For simplicity we consider only
conduction band electrons, for which we can ignore
spin orbit interaction, and we ignore Coulomb repulsion.
The latter tends to enhance carrier mediated exchange
interactions so that our results do not change qualitatively
if this approximation is abandoned. Conduction band
electrons (creation operator cyn;	) occupy confined levels

0n of the dot. The Mn spins are described with S � 5=2
operators ~MI. The spin of the quantum dot electrons and
the Mn interact via a zero range exchange interaction. The
Mn spins interact also with each other via a short range
antiferromagnetic superexchange interaction [3] J I;I0 ,
which competes with the ferromagnetic carrier mediated
coupling. The Hamiltonian reads

H �
X
n;	


0nc
y
n;	cn;	 � Jc

X
I

~MI � ~Se� ~xI� �H AF; (1)

where H AF �
1
2

P
I;I0J II0

~MI � ~MI0 ,

~S� ~xI� 	
X

	;	0;n;n0
�

n� ~xI��n0 � ~xI�

1

2
~�	;	0cyn;	cn0;	0 (2)

is the quantum dot electron local spin density, and �n� ~xI�
is the nth orbital wave functions of the dot. Exchange
interaction produces transitions between different levels
of the dot. For the dots considered here, the typical
interlevel spacing � of the order of tens of meV [9], except
for the degeneracies that some of the dots might have. The
exchange energy of a quantum dot electron with a single
Mn is approximately given by j 	 Jc=�D, where �D is
the quantum dot volume. For Cd1�xMnxTe quantum dots
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with 10 nm of lateral dimension, we have j ’
1:5� 10�2 meV, much smaller than the level spacing.

Effective spin Hamiltonian.—In the following we de-
rive analytically the effective interaction between the Mn
spins, which are treated classically. The canonical en-
semble equilibrium partition function for the dot with a
fixed number of electrons Ne is given by

Z N �
Z
d ~M1 � � � d ~MNe��H AF

X
�

e��E�;N � ~MI�; (3)

where � � 1=kBT and E�;Ne
� ~MI� is the energy of the

Slater determinant labeled with �, for a given Mn
spin configuration, � ~MI�. For kBT 
 � we can safely
neglect in (3) all the higher energy configurations �,
except the ground state Slater, whose energy we denote
with EN� ~MI�. In this approximation we have ZN �R
d ~M1 � � � d ~MNe��H eff where the effective Mn-Mn cou-

pling is

H eff � H AF � EN� ~MI�: (4)

Let �l� ~MI� be the eigenstates of the Hamiltonian matrix

H n	;n0	0 � 
0n �
Jc
2

X
I

~MI � ~�	;	0�

n� ~xI��n0 � ~xI� (5)

associated with (1) for a given configuration of classical
spins, ~MI. We have EN� ~MI� �

P
l�1;N�l� ~MI�. Using the

fact that � is the largest energy scale, we treat the n � n0

terms as a perturbation and diagonalize each of the n
intralevel 2� 2 boxes. To linear order in Jc we have
�n;� ’ 
0n � j Jc2

P
Ij�n� ~xI�j2 ~MIj �O��JccMn�

2

� �. For an odd
number of electrons, Ne � 2N � 1, all the contributions
linear in Jc coming from the first 2N electrons vanish
identically and the only contribution comes from the most
external electron. Modulo an irrelevant constant, the
ground state electronic energy for a dot with 2N � 1
electrons is E2N�1 ’ �N� or

E o � �
jJcj
2

�������������������������������������������������������������������������X
I;I0

j�N�1� ~xI�j2j�N�1� ~xI0 �j2 ~MI � ~MI0

s
: (6)

Equations (4) and (6) define the carrier mediated Mn-Mn
coupling which is one of the important results of this
Letter. The Mn-Mn interaction mediated by an odd num-
ber of electrons, including a single electron, always favors
ferromagnetic couplings and it scales with Jc. These
features are in contrast with the standard bulk RKKY
coupling, which scales with J2c , and it can be either
positive or negative. For these reasons the effective cou-
pling (6) is stronger than its bulk counterpart.

For an even number of electrons all the contributions
linear in Jc cancel. The leading order contribution to Ee
comes from interlevel exchange coupling. We calculate Ee
doing perturbation theory around Jc � 0. The magnetic
part of the ground state electronic so obtained reads
117201-2
E e �
X
I;I0

�
J2c
2

X
n;n0

!n;n0 �I; I
0�
fn � fn0


0n � 
0n0

�
~MI � ~MI0 ; (7)

where !n;n0 �I; I0� 	 �

n� ~xI��n0 � ~xI��


n� ~xI0 ��n0 � ~x0I� and fn �
0; 1 are the occupation of the unperturbed dot in the
ground state electronic configuration. The effective cou-
plings (7) are weaker than (6) and can be both positive
and negative (ferromagnetic or antiferromagnetic) for a
given dot and different Mn couples. The striking differ-
ences between effective interactions (6) and (7) permit us
to anticipate very different behavior for dots with open
and closed shell electronic structure.

Local mean field theory.—Effective interactions (6)
and (7) between the spins result from integrating out the
conduction electrons in some limits and treating the Mn
spins classically. We now do a mean field theory for
Hamiltonian (1), keeping track of both Mn and electrons.
Quantum dot electrons interact with an effective ex-
change field provided by the expectation value of the
Mn spin operators. The latter is calculated assuming
that each Mn spin interacts with an effective field pro-
vided by the quantum dot spin density and its neighbor-
ing Mn spins, via antiferromagnetic superexchange
interaction. Since both the electron spin density and the
Mn neighborhood are different for each Mn, each Mn has
a different expectation value, in contrast with the homo-
geneous models used for bulk [3,11]. The local mean field
felt by the Mn at ~xI reads

g$Bh
~BIi � Jch ~S� ~xI�i �

1

2

X
I0
J II0 h ~MI0 i: (8)

The expectation value for the magnetization of a spin S �
5=2 in the effective field of Eq. (8) reads

h ~MIi � S ~uIBS

	
S
kBT

g$Bh
~BIi



; (9)

where ~uI is the unitary vector parallel to h ~BIi and BS is
the Brillouin function [3]. Finally, the equation for the
average conduction electron local spin density is

h ~S� ~xI�i �
1

Zel

X
�

e��E�
X
l

h�lj ~S� ~xI�j�lifl���; (10)

where Zel �
P

�e
��E� , j�li is the eigenvector associated

with the �l eigenvalue of Hamiltonian (5) with ~MI re-
placed by h ~MIi given by Eq. (9), and fl��� is the occupa-
tion (0 or 1) level in the many electron configuration �.

In the following we show results for Cd1�xMnxTe hard
wall (HW) cubic quantum dots of dimensions Lx, Ly, and
Lz for which 
0n and �n are known analytically. The
effective mass of (Cd,Mn)Te is approximately [13] m
 �
0:11m0. In the HW model, the only role of m
 is to scale

0n. In order to compensate for the overestimation of the
energy level spacings of the HW model, we use m
 �
0:3m0 everywhere except in Fig. 1 (right). Unless stated
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otherwise, we take [3] Jc � 15 eV �A3. Superexchange
antiferromagnetic coupling J II0 decays exponentially
with distance and we consider coupling only to first
neighbors, J FN � 0:5 meV [3,14].

The positions of the Mn atoms are randomly chosen in
the cation sites of the zinc blende lattice with lattice
constant, a � 6:4 �A. The initial value of h ~MIi is also
chosen randomly. A self-consistent numerical solution
of Eqs. (8)–(10) yields converged values of h ~MIi which
are stable, independent of all initial conditions, conver-
gence procedure, and small variations of the energy
scales of the problem. We characterize the collective
magnetic order with the average Mn magnetization per
Mn: hMi 	 j 1N

P
Ih ~MIij, which is bounded between 0 and

S � 5=2. Different realizations of the Mn positional con-
figurations, f ~rIg, for otherwise identical dots give differ-
ent values of hMi. To make sure that general results are
independent of a particular Mn realization we perform
averages over different realizations of f~rIg. The net mag-
netization of a dot averaged over configurations is denoted
by hhMii. The mean standard deviation among different
realizations of f ~rIg is denoted by 	M.

In Fig. 1 we plot hhMii and 	M (vertical bars) as a
function of Ne for two different dots. In Fig. 1 (left) we
consider two different temperatures, kBT � 0:1 and
2.0 K, whereas in Fig. 2 we consider three different values
of the effective mass, 0:1m0, 0:2m0, and 0:3m0. Dots 1 and
2 (left and right panels) have the same Mn concentration
and the same Lx (x � 0:01, Lx�4 nm) but different di-
mensions. Dot 1 has Ly�6 nm, Lz�7 nm and dot 2 has
Ly � 8:5 nm, Lz � 9 nm. The number of Mn impurities
is 25 and 46, respectively. We find the following:

(i) A single electron is enough to induce a spontaneous
collective magnetization different from zero in the ab-
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FIG. 1 (color online). Magnetization per Mn versus Ne, aver-
aged over disorder configuration for two different dots.
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sence of applied field. The collective magnetization sur-
vives at temperatures of 1 K and higher. The bulk mean
field Curie temperature for parabolic bands yields, for
Cd0:99Mn0:01Te, kBTCjbulk�

S�S�1�
3

3
2cMn

n

F
’20mK, where

n and cMn are the electron and Mn density, respectively,
corresponding to the dot of Fig. 1. Therefore, carrier
mediated spin correlations in the quantum dots survive
at temperatures 2 orders of magnitude larger than TC in
bulk.

(ii) The addition or the removal of a single electron
produces a dramatic change in the magnetization of the
dots.

(iii) The spontaneous magnetization is larger, in gen-
eral, for open shell configurations (odd number of elec-
trons) than for closed shell configurations (even number
of electrons). Closed shell configurations with a small gap
can yield larger interlevel couplings, as in the case of
Ne � 4 in the right panel of Fig. 1. In the right panel of
Fig. 1, we see how the relative change of hhMii as a
function of m
 is much smaller for odd Ne than for even
Ne. This reflects the intralevel origin of the effective
interaction (6) and the interlevel origin of the effective
interaction (7).

In Fig. 2 we analyze how the magnetization changes as
a function of temperature and how these curves scale
with the value of the exchange constant which we take
Jc � a� 15 eV �A3, with a � 1 (solid symbols) and
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FIG. 2 (color online). Magnetization per Mn vs temperature
for odd (left) and even (right) number of electrons for dot 1 (see
the text). Exchange J � a� 15 eV �A3. Filled symbols: a � 1;
empty symbols: a � 0:5. In the inset we show the histograms
of h ~Mi � ~Mji at kbT � 50 mK for N � 1 (left panel) and N � 2
(right panel).
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FIG. 3 (color online). Left panel: hhMii per Mn as a function
of Mn content, x at kBT � 0:6 K. Right panel: spontaneous spin
splitting of the lowest level of the dot, at three temperatures, as
a function of Mn content x.
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a � 0:5 (open symbols). In the left [right] panel of Fig. 2
we show M�T=a� [M�T=a2�] for an odd [even] number of
electrons in dot 1. The shapes of the curves for Ne odd are
all very similar to each other and resemble the sponta-
neous magnetization of a confined exciton polaron [15].
Notice that, in agreement with Eq. (6), the curves scale
with T=Jc. In the case of even Ne the M�T� curves scale
with T=J2c , in agreement with (7), and their shape varies
from case to case, as a result of the complicated compe-
tition of carrier mediated ferromagnetic and antiferro-
magnetic couplings and superexchange. To quantify this,
we plot in the insets histograms of the values of the
correlation matrix h ~MI � ~MJi for Ne � 1 (left) and Ne �
2 (right) at very low temperatures (50 mK). The Ne � 1
histogram is biased towards positive values (ferromag-
netic couplings), whereas the Ne � 2 histogram displays
a rather symmetric distribution of ferromagnetic and
antiferromagnetic couplings.

The competition between carrier mediated and super-
exchange couplings evolves as the Mn concentration in-
creases. In the left panel of Fig. 3 we show hhMii and 	M
(vertical bars) as a function of Mn concentration, x, for
dot 2. We see that, for Ne � 1, hhMii decreases monotoni-
cally as a function of x as a result of the increase of the
number of first neighbor pairs coupled antiferromagneti-
cally. The curve for Ne � 2 has a maximum around x �
0:01 and decreases at higher concentrations.

The effects related to spontaneous magnetization can
be observed provided that the collective magnetization is
static during the time scale of the probe. A small source of
spin anisotropy, like an applied field or Rashba spin orbit
interaction, can be very efficient in slowing down the
magnetization dynamics. The spontaneous magnetization
117201-4
results in a splitting of the quantum dot energy levels
which could be measured in transport [8]. In the right
panel of Fig. 3 we plot the energy splitting of the lowest
quantum dot doublet as a function of x, for Ne � 1 at
three different temperatures for dot 2. The splitting is a
decreasing function of temperature and an increasing
function of the Mn content up to x � 0:03, declining
for higher x, due to the increase of first neighbors pairs.

In summary, our results indicate that a very large
control of carrier mediated interactions can be achieved
in quantum dots in which the number of electrons can be
changed one by one. We claim that a few conduction band
electrons couple the spin of several tens of Mn atoms in a
(II,Mn)VI semiconductor quantum dot. An odd number of
electrons, including just one, yields a ferromagnetic cou-
pling [Eq. (6) and Fig. 1 and the left panel of Fig. 2)],
whereas an even number of electrons give both ferromag-
netic and antiferromagnetic carrier mediated couplings
[Eq. (7) and Fig. 1 and the right panel of Fig. 2]. The result
of the competition between carrier mediated interactions
and short range antiferromagnetic superexchange is a
spontaneous collective magnetization which survives at
temperatures of the order of 1 K, 2 orders of magnitude
higher than the mean field prediction for n-doped bulk
material.
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