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Vortex Clusters in Quantum Dots
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We study electronic structures of two-dimensional quantum dots in strong magnetic fields using
mean-field density-functional theory and exact diagonalization. Our numerically accurate mean-field
solutions show a reconstruction of the uniform-density electron droplet when the magnetic field flux
quanta enter one by one the dot in stronger fields. These quanta correspond to repelling vortices forming
polygonal clusters inside the dot. We find similar structures in the exact treatment of the problem by
constructing a conditional operator for the analysis. We discuss important differences and limitations of
the methods used.
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Vortices appear in many physical systems from torna-
does and bathtub whirlpools [1] to type-II superconduc-
tors and rotating Bose-Einstein condensates [2]. In the
fractional quantum Hall effect (FQHE) [3], the external
magnetic field B penetrates through the two-dimensional
(2D) electron system at the vortex positions. Every vortex
corresponds to a single magnetic field flux quantum. For
the quantum Hall state of the filling factor � � 1, a single
vortex is on top of each electron. For stronger B, more
vortices appear and, e.g., the Laughlin state of � � 1=3
attaches three vortices on top of each electron. The vor-
tices keep electrons farther apart, reducing the interac-
tion energy and causing strong correlations between the
electrons.

In this Letter, we report results of detailed numerical
investigations of the electronic structure of 2D quantum
dots (QDs) [4] in strong B. We use both a mean-field and
an exact many-body approach. The B values used are such
that our QD states are related to the FQHE filling 1 �
� � 1=3. We find both by the mean-field and the exact
approach that vortices appear one by one inside QD as we
strengthen B. The positions of these vortices are fixed in
the mean-field solutions and are visible as zeros in the
electron densities. The vortices form a polygonal cluster
inside the QD. In the exact treatment the vortices are
mobile. However, by constructing a conditional single-
particle wave function we are able to pinpoint them.
Every electron binds one vortex, and there are also addi-
tional vortices that are not bound to any particular elec-
tron. These additional vortices form similar vortex
clusters as found in the mean-field approach. Similar to
the FQHE, the positions of the additional vortices are
such that they reduce the interaction energy.

We model the 2D QD by an effective-mass Hamil-
tonian
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where N is the number of electrons in the dot, A is the
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vector potential of the perpendicular B, m� is the effec-
tive electron mass, and  is the dielectric constant of the
medium. We use a parabolic confinement Vc�r� �
1
2m

�!2
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2, and the material parameters of GaAs,m�=me �

0:067, and =0 � 12:4. We assume the Zeeman effect to
be strong enough to spin polarize our system in the B
range considered. We solve the model using both the
mean-field density-functional theory (DFT) and the exact
diagonalization (ED). We use two variants of DFT,
namely, the spin-DFT (SDFT) and the current-spin-
DFT (CSDFT) [5]. The DFT solutions are found on
real-space grids without symmetry restrictions [6].
Special effort is laid on the numerical accuracy, and the
convergence is tested with large grids up to the size of
256	 256 grid points. The exchange-correlation effects
are taken into account using local approximations [7]. In
CSDFT, the effect of currents is also included in the
exchange-correlation functionals, again in a local ap-
proximation. CSDFT is computationally more demanding
than SDFT. As both schemes give qualitatively similar
results, we have mainly used SDFT. Our ED calculations
use wave functions restricted to the lowest Landau level
(LLL) [8–10].

The starting point for our study is a B value where the
maximum-density-droplet (MDD) state is formed [11].
This is a finite-size precursor of the � � 1 quantum Hall
state [3]. This state can be found in various QD geome-
tries, and it is characterized by a rather flat and compact
electron density [12]. In our case, MDD is formed by the
LLL orbitals with angular momentum l � 0; 1; . . . ; N �
1, and the total angular momenta L equals N�N � 1�=2.
In MDD, one vortex is bound to each electron to give the
correct fermion nature in the LLL wave function.

Our study focuses on large B values beyond the MDD
region, where ED shows the ground states to occur only at
certain ‘‘magic’’ L values, and L exhibits a stepwise
structure as a function of B [10,13,14]. We show that the
ground states in this region can be characterized by an
increasing number of additional vortices entering the QD
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and forming vortex clusters. We first analyze the post-
MDD region of a six-electron QD. Setting the confine-
ment strength to �h!0 � 5 meV, SDFT predicts the MDD
formation at B 
 5 T, and the state is a ground state up to
B 
 8 T [6]. Figure 1 shows the SDFT result for L as a
function of B. The ED ground-state L values, which agree
with the previous calculations [14], are given by the
dashed lines. The values L � 15� 6n, where n is an
integer, reflect the sixfold rotational symmetry, whereas
values L � 15� 5n correspond to the fivefold rotational
symmetry [10]. The SDFT results show plateaus with a
small slope just at the magic L values. A possible excep-
tion is the L � 39 magic momentum which is not clearly
visible in the SDFT results. One should note that the
unrestricted Hartree-Fock approximation has been
shown to follow the trend in angular momentum but not
to reproduce the staircase structure [15]. As shown by
densities in Figs. 2(a)–2(c), the plateaus are character-
ized by vortex holes, i.e., rotating currents with zero
electron density at the center. The number of vortices
increases by one between plateaus of nearly constant L.
There are vortices also farther away from the dot center,
where the electron density is a tiny fraction of the maxi-
mum density.

To compare our ED results with the DFT ones, we have
constructed an operator that efficiently shows the posi-
tions of the vortices in the system. We first find the most
probable electron positions fr�i g

N
i�1 by maximizing the

density j�j2. One of the electrons is then moved to a
new position r, and a conditional single-particle wave
function is evaluated as
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FIG. 1. Angular-momentum L of the six-electron QD from
SDFT (open circles). The plateaus are characterized by vortex
holes in the electron density. The number next to a plateau gives
the number of vortices inside QD. The horizontal lines corre-
spond to ground-state L values from ED.
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The change in the phase can be obtained from the angle �
of the wave function  c�r� � j c�r�j exp�i��r��. We have
plotted  c in Figs. 2(d)–2(f). The electron density is
shown using contours, and the phase is shown using a
gray scale to indicate the angle. The vortices show up as
zeros in  c. A rotation around one vortex changes the
phase by 2�. One can see that the number of additional
vortices in the inner part of the QD agrees with our DFT
results. There are also vortices outside the ring of fixed
electrons, as in the CSDFT case. One should note that in
the L � 45 solution of Fig. 2(f), the total number of
vortices close to each fixed electron is three, as in the
Laughlin wave function for the � � 1=3 quantum Hall
state [3]. Unlike in the Laughlin state, there is a repulsion
between the vortices, forcing two of them to stay on the
opposite sides of the fixed electron. However, the overlap
between the Laughlin and the exact states is high, 0.98.

The electron densities in Figs. 2(d)–2(f) also show the
Wigner-molecule formation [16]. In Fig. 2(d) the condi-
tional density is still well spread over the whole QD
(consider, e.g., the third contour from the top, correspond-
ing to the density e�5 
 0:007), whereas in Fig. 2(f) the
density is strongly peaked around the most probable
position of the probe electron. One should note that the
most probable electron positions approach the classical
positions in the Wigner-molecule limit. For the Coulomb
interaction, the classical configuration of six point
charges is a pentagon with one electron in the center.
This result is in accord also with the CSDFT solution
for the six-vortex case which shows an electron in the
a) b) c)
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FIG. 2. Upper panel: Electron densities of the six-electron
QD calculated with CSDFT for single-vortex (a), three-vortex
(b), and six-vortex (c) configurations. Lower panel: Most
probable electron positions fr�i g

N
i�1 (crosses) and conditional

electron densities (contours) and phases (gray scale) from ED
for the cases of the upper panel: L � 21 (d), L � 30 (e), and
L � 45 (f). We probe with the rightmost electron. The densities
are on a logarithmic scale (values e�i, i � 1; 3; . . . ; 17), and the
phase changes from � to �� on the lines where shadowing
changes from the darkest gray to white.
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middle and a five-electron ring. This is also the most
probable electron configuration in most ED ground states,
the one in Fig. 2(d) being one of the exceptions having the
hexagonal configuration. In many ground states, symme-
try eliminates one of the two possible configurations. For
the L � 45 case of Fig. 2(f), the hexagonal configuration
has also a high probability, namely, of 77% of the pen-
tagonal one, showing that the electrons still make multi-
particle exchanges in this ground state [16].

From the computational point of view, constructing the
conditional wave function  c is a demanding task. The
basic reason for this is that it does not contain any
integrations of coordinates, which leaves  c a true
N-particle operator. Thus one is forced to actually con-
struct the Slater determinants in the ED wave function
expansion. For efficient evaluation of the determinants,
we have first decomposed the matrices to triangular ones.
The computational cost in constructing  c for the L � 45
case with a grid size of 100	 100 for r is 20 times more
than that of a mere diagonalization. For this reason,
previous ED works have mainly concentrated on opera-
tors that can be written using one-particle and two-
particle operators [10].

As the Hamiltonian of Eq. (1) is rotationally symmet-
ric, the particle density should also have this property.
Calculations, however, show that the particle density
from DFT is not necessarily symmetric. Vortex solutions
clearly break the rotational symmetry of the particle
density in the case of more than one vortex. Other
solutions with broken rotational symmetry are, e.g.,
spin-density-wave and charge-density-wave structures
[17,18]. The analysis and interpretation of these solutions
are highly nontrivial. Symmetry-breaking may result
from an unphysical mixture of states that do not mix in
an exact treatment [19,20]. However, for the vortex case,
there are strong topological reasons behind the broken
symmetry in DFT. Namely, if we suppose that there are
vortices in the true many-body solution of the system, this
directly forces the vortices to localize. This follows from
considering the Kohn-Sham (KS) equations close to a
vortex. The kinetic energy diverges if the electron density
of the KS orbit does not vanish at the vortex position. As a
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FIG. 3. Occupation of angular-momentum eigenstates for so-
lutions with three (left) and four (right) vortices. Triangles
mark the CSDFT and squares the ED results, respectively. The
minima at the low l values show the formation of vortices in
the QD.
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mean-field theory, DFT misses relative coordinates of the
electrons, and thus the vortices must localize in space. In
the true many-body solution of the system, however, the
vortices move as the electron coordinates are changed.
Thus the vortices behave as quantum-mechanical parti-
cles in the exact treatment, showing quantum-mechanical
zero-point motion, but the mean-field approximation
forces them to behave as classical particles.

The CSDFT and ED solutions are analyzed further by
calculating the occupation of the angular-momentum
eigenstates, i.e., the projections on the Fock-Darwin or-
bitals. For the MDD, all angular momenta l � N � 1
have occupancy one and the others are zero. The single-
vortex state of DFT has the l � 0 orbital unoccupied and
the following l � 1; . . . ; 6 orbitals occupied. Figure 3
shows the occupations for three- and four-vortex solu-
tions (L � 30 and 35, respectively). The missing occupa-
tion at low l increases with the number of vortices. Thus
vortices appear as holes in the MDD. As the magnetic
field squeezes the QD, it becomes at some points favorable
to extend the system by creating an additional vortex hole
into the system [8]. From the occupation in Fig. 3 one can
see that the DFT vortices are more localized to certain
angular-momentum values than the ED ones. The SDFT
occupations differ more from the ED results than the
CSDFT ones.

We have performed SDFT calculations also for a 24-
electron QD, with the confinement strength changed to
�h!0 � 1:8940 meV. The calculations predict the forma-
tion of clusters of vortices in high magnetic fields.
Figure 4 shows the electron density at 5 T (L 
 491).
The currents in our DFT solutions circulate counterclock-
wise on the edge of the QD, whereas the circulation is
clockwise around the vortices. This behavior is consistent
with the classical picture of a conducting ring where the
inner circulation of electrons reverses the current near the
center hole [21]. Since the vortex holes behave as classical
repelling particles in DFT, the vortex clusters inside the
QD are usually similar to the configurations of classical
point charges confined by a parabolic external potential
[22]. For instance, the solution at 5 T contains 14 vortices
arranged in the �4; 10� configuration, i.e., four vortices in
the middle and ten in the second shell, which is the same
FIG. 4. Left: SDFT electron density of a 24-electron QD at
5 T showing 14 vortices. Right: Electron density (gray scale,
the white regions have low electron density and correspond to
vortices) and currents (arrows) on the edge of the QD.
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as the ground-state configuration for 14 classical parti-
cles. The positions of vortices are not independent of the
electron degrees of freedom, and therefore the vortex
configurations do not necessarily match those of the
classical case. This can be seen in Fig. 2(c) where the
vortex cluster is hexagonal in contrast to the �1; 5� con-
figuration for the classical six-particle system.

In Bose-Einstein condensates, there is a repulsive in-
teraction between the atoms, and the many-body wave
function for a rotating condensate can be constructed
similar to that for a 2D electron gas in a magnetic field
[23]. This means that the two systems are analogous and
explains why the mean-field solution for the rotating
Bose-Einstein system also shows vortex clusters [2].

The DFT solutions between the plateaus show charge-
density-wave (CDW) solutions with a fractional L. In the
first CDW domain L increases linearly with B from 15 to
21 (see Fig. 1). The particle density in this region shows
six charge maxima in the form of a hexagon and with
currents flowing counterclockwise around them. The ra-
dius of each charge lump is of the order of the magnetic
interaction length ‘B �

������������
�h=eB

p
. These solutions are remi-

niscent of the localized electron states found by Reimann
et al. just above the MDD region [18]. Reimann et al. do
not show results for the higher B values where vortex
solutions appear in our calculations. We want to underline
that finding the vortex solutions requires high numerical
accuracy. Our real-space scheme is superior to the plane-
wave expansion of wave functions used by Reimann et al.,
especially in describing the vanishing electron density at
the vortex core.

We have analyzed the angular-momentum occupations
of the first CDW region between 15 and 21. The results
show that these states are combinations of the L � 15 and
21 states. A mixture of these two states results in a CDW
with six peaks in the form of a hexagon. This result is in
disaccord with the (excited state) ED solutions between
L � 15 and 21, which show a vortex hole moving from
the outer edge toward the center [9]. The DFT mixing of
eigenstates belonging to different angular-momentum
eigenvalues can be thought to be unphysical and resulting
from limitations of DFT. These limitations can be seen
also in the mixing of total spin states in SDFT [20]. Our
analysis of the symmetry-breaking solutions shows that
DFT, which is an indispensable tool for large systems,
may reveal proper correlations between the electrons via
these solutions. But the correct interpretation of the re-
sults requires careful analysis completed by, e.g., the ED
method.

To conclude, we have found vortex clusters as mean-
field solutions of the two-dimensional quantum dots in
strong magnetic fields. The external magnetic field pene-
trates through the dot at the position of the vortices,
inducing electron currents that circulate around them.
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The exact treatment of the problem shows similar fea-
tures in the conditional electron wave function. The
mean-field approach has been shown to lack the
quantum-mechanical nature of the vortices, leading to a
vortex localization and a broken rotational symmetry for
the cases with more than one additional vortex. Apart
from these facts, DFT results have been shown to accu-
rately describe the electronic structure of this challenging
system, enabling one to study system sizes beyond reach
of the more exact treatments.We hope that this theoretical
prediction will inspire further work for actual experi-
mental evidence of vortex formation in quantum dots.
This could presumably be seen indirectly in the magne-
tization measurements of quantum dots. A more direct
observation could be made if the vortices get localized
due to a lower symmetry of the system, e.g., in quantum
dots distorted by impurities. The stability and structure of
vortices in nonsymmetric potentials is, however, a non-
trivial problem, and further theoretical work is needed.
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