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We report results of computer simulations of the deformation and failure behavior of a thin
crystalline strip of ‘‘hard disks’’ in two dimensions confined within a quasi-one-dimensional ‘‘hard-
wall’’ channel of fixed width corresponding to a few disk diameters. Starting from a commensurate
triangular solid, stretching the strip along its length introduces a rectangular distortion. This, beyond a
critical strain, leads to failure of the solid by ‘‘phase separation’’ into alternating bands of solid and
smectic-like phases. The critical strain is inversely proportional to the channel width, i.e., thinner strips
are stronger. The large plastic deformation which precedes failure is observed to be reversible.
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FIG. 1. Results of canonical ensemble Monte Carlo (MC)
simulations of N � 65� 10 hard disks confined between two
parallel hard walls separated by a distance Ly � 9d. For each
�, the system was equilibrated over 106 MC steps (MCS) and
data averaged over a further 106 MCS. At � � 0:85, we have a
strain-free triangular lattice. Plots show the structure factors

Gi

; i � 1���; 2��� for RLVs Gi���, averaged over symmetry
related directions, as a function of � and the Lindemann
parameter l���. The lines in the figure are a guide to the eye.
Inset shows the geometry used, the reciprocal lattice vectors
(RLVs) G1 and G2, and the rectangular unit cell.
Studies of small assemblages of molecules with one or
more dimensions comparable to a few atomic spacings
are significant in the context of nanotechnology [1].
Designing nanosized machines requires a knowledge of
the mechanical behavior of systems up to atomic scales,
where, a priori, there is no reason for our ideas, derived
from macroscopic continuum elasticity theory, to be valid
[2]. Small systems often show entirely new behavior if
hard constraints are imposed leading to confinement in
one or more directions. Consider, for example, the rich
phase behavior of quasi-two-dimensional colloidal solids
[3,4] confined between two glass plates showing square,
triangular, and ‘‘buckled’’ crystalline phases and a re-
cently observed reentrant surface melting transition[5] of
colloidal hard spheres not observed in the bulk[6–8].

A bulk solid, strained beyond its critical limit, fails by
the nucleation and growth of cracks [9–11]. The interac-
tion of dislocations or zones of plastic deformation
[10,12] with the growing crack tip determines the failure
mechanism, viz., either ductile or brittle fracture. Studies
of the fracture of single-walled carbon nanotubes [13]
also show failure driven by bond-breaking which pro-
duces nanocracks which run along the tube circumfer-
ence leading to brittle fracture. Thin nanowires of Ni are
known [14], on the other hand, to show ductile failure
with extensive plastic flow and amorphization. In general,
nanostructured materials are known [15] to have superior
fracture resistance.

In this Letter, we investigate the failure, under tension,
of a confined solid, composed of atoms interacting by
purely entropic forces, in quasi-one-dimension. We per-
form computer simulations, in the constant number and
strain ensemble, of two-dimensional hard disk ‘‘atoms’’
confined within a long one-dimensional channel, just
wide enough to accommodate only a few (nl) atomic
layers of a defect free triangular lattice. Unlike bulk
solids, nanotubes, or wires, we find that failure in this
case is not mediated by cracks but commences by the
0031-9007=04=93(11)=115702(4)$22.50 
generation of bands of a nl � 1 layered smectic phase [16]
within the solid as the length of the system is increased
(Fig. 1). Nevertheless, the critical strain for failure by this
novel mechanism, for small nl < 25, increases with de-
creasing channel width. Thinner strips are more resistant
to failure due to a kinetic hindrance to the creation of
dislocation pairs. Fracture is ductile, with large prefailure
plastic deformation which is reversible, i.e., the stress-
strain curve is traced back (see Fig. 2) once the sense of
strain is reversed. Our results may be directly verified in
experiments on sterically stabilized ‘‘hard sphere’’ col-
loids [17] confined in glass channels. Some aspects of our
results may also be relevant for similarly confined atomic
systems interacting with more complex potentials.

The bulk system of hard disks where particles i and j,
in two dimensions, interact with the potential Vij � 0 for
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FIG. 2. A plot of the conjugate stress � versus external strain
� obtained from MC simulations of 65� 10 hard disks ini-
tially at � � 0:85. Regions corresponding to a crystal (Cr),
smectic (Sm), and the mixed phase are marked. Data is ob-
tained after equilibrating at each strain value for 2� 104 MCS
and averaging over a further 3� 104 MCS. The dotted lines are
a guide to the eye and the solid straight line is the prediction of
free volume theory (see text), which slightly underestimates the
elastic constant. The entire cycle of increasing ���� and de-
creasing to zero ��� using typical parameters appropriate for an
atomic system corresponds to a real frequency of ! �
100 KHz. Results do not essentially change for ! � 10 KHz�
1 MHz. Inset shows the variation of the critical �� with nl,
points: simulation data; line: �� � nl � 1=2.
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jrijj> d and Vij � 1 for jrijj 
 d, where d is the hard
disk diameter and rij � rj � ri, the relative position vec-
tor of the particles, has been extensively [6–8] studied.
Apart from being easily accessible to theoretical treat-
ment [18], experimental systems with nearly ‘‘hard’’
interactions, viz., sterically stabilized colloids [17] are
available. The hard disk free energy is entirely entropic in
origin and the only thermodynamically relevant variable
is the number density 
 � N=V or the packing fraction
� � ��=4�
d2 the energy scale being set by kBT.
Accurate computer simulations [7] of hard disks show
that for �> �f � 0:719 the system exists as a triangular
lattice which melts below �m � 0:706. Elastic constants
of bulk hard disks have been calculated in simulations
[8,19]. The surface free energy of the hard disk system in
contact with a hard-wall has also been obtained [20]
taking care that the dimensions of the system are com-
patible with a strain-free triangular lattice.

Consider a narrow channel in two dimensions of width
Ly defined by hard walls at y � 0 and Ly (Vwall�y� � 0 for
d=2< y< Ly � d=2 and � 1 otherwise) and length Lx

with Lx � Ly. Periodic boundary conditions are as-
sumed in the x direction. In contrast to the quasi-two-
dimensional case studied in Refs. [3,4], the reduced di-
mensionality severely limits the choice of available struc-
tures. Within the extensive parameter range explored by
us, we do not find evidence for a stable homogeneous
structure that continuously interpolates between a nl
and nl � 1 layered triangular lattice analogous to the
buckled phase [3,4]. Therefore, in order that the channel
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may accommodate nl layers of a homogeneous triangular
lattice with lattice parameter a0 of hard disks of diameter
d, (Fig. 1) one needs

Ly �

���
3

p

2
�nl � 1�a0 � d; (1)

with Lx � nxa0, where nx is the number of unit cells
in the x� direction. For a system of constant number
of particles (N � nxnl) and Ly, a0 is decided by
� � �Nd2=4LxLy. Defining ���;Ly� � 1� 2�Ly �

d�=
���
3

p
a0, Eq. (1) reads � � integer � nl and violation

of Eq. (1) implies a rectangular strain away from the
reference triangular lattice of nl layers. The lattice pa-
rameters of a centered rectangular (CR) unit cell are ax
and ay (Fig. 1 inset). In general, for a CR lattice with
given Ly we have ay � 2�Ly � d�=�nl � 1� and, ignoring
vacancies, ax � 2=
ay.

Calculation of the deformation strain needs some care
at this stage. Using the initial triangular solid (packing
fraction �0) as reference, the ‘‘external’’ strain associated
with changing Lx, while keeping Ly fixed, is � � ��0 �

��=� where � is the packing fraction of the deformed
solid. Internally, the solid is, however, free to adjust nl to
decrease its energy (strain). Therefore, one needs to cal-
culate strains with respect to a reference, distortion-free,
triangular lattice at �. Using the definition "d � "xx �
"yy � �ax � a0�=a0 � �ay �

���
3

p
a0�=

���
3

p
a0 and the expres-

sions for ax, ay, and a0 given above, we get

"d �
nl � 1

�� 1
�

�� 1

nl � 1
; (2)

where the number of layers nl is the nearest integer to � so
that "d has a discontinuity at half-integral values of �. For
large Ly, this discontinuity and "d itself vanishes as 1=Ly

for all �. This ‘‘internal’’ strain "d is related nonlinearly
to � and may remain small even if � is large. Note that any
pair of variables � and Ly (or alternately � and �)
uniquely fixes the state of the system.

We study the effects of strain on the hard disk trian-
gular solid at fixed Ly large enough to accommodate
a small number of layers nl � 9� 25. We monitor
the Lindemann parameter l � h�uxi � uxj�

2i=a2x � h�uyi �
uyj�

2i=a2y where the angular brackets denote averages
over configurations, i and j are nearest neighbors, and
u�i is the �th component of the displacement of particle i
from its mean position. The parameter l diverges at
the melting transition [21]. We also measure the structure
factor 
G � jh 1

N2

PN
j;k�1 exp��iG:rjk�ij for G � �G1���,

the reciprocal lattice vector (RLV) corresponding to the
set of close-packed lattice planes of the CR lattice per-
pendicular to the wall, and �G2��� the four equivalent
RLVs for close-packed planes at an angle ( � �=3 and
2�=3 in the triangular lattice) to the wall (see Fig. 1
inset).
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Throughout, 
G2
< 
G1

� 0, a consequence of the
hard-wall constraint [20] which manifests as an oblate
anisotropy of the local density peaks in the solid. As � is
decreased, both 
G1

and 
G2
show a jump at � � �c1

where � � �� � nl � 1=2 (Fig. 2 inset). For �< �c1 , we
get 
G2

� 0 with 
G1
� 0, signifying a transition from

crystalline to smectic-like order. The Lindemann pa-
rameter l remains zero and diverges only below � �

�c3�� �m�, indicating a finite-size broadened melting of
the smectic to a modulated liquid phase. The stress [22],
� � �xx � �yy in units of kBT=d2, versus strain, �, curve
is shown in Fig. 2. For � � �0 (� � 0) the stress is purely
hydrostatic with �xx � �yy as expected. Initially, the
stress increases linearly, flattening out at the onset of
plastic behavior at � & �c1 . At �c1 , with the nucleation
of smectic bands, � decreases and eventually becomes
negative. At �c2 , the smectic phase spans the entire sys-
tem and � is minimum. On further decrease in � towards
�c3 , � approaches zero from below (Fig. 2), thus forming
a van der Waals loop. If the strain is reversed by increas-
ing � back to �0, the entire stress-strain curve is traced
back with no remnant stress at � � �0 showing that the
plastic region is reversible. For the system shown in
Figs. 1 and 2, we obtained �c1 � 0:77, �c2 � 0:74, and
�c3 � 0:7. As Ly is increased, �c1 merges with �c3 for
nl * 25. If instead, Lx and Ly are both rescaled to keep
� � nl fixed or periodic boundary conditions are im-
posed in both x and y directions, the transitions in the
various quantities occur approximately simultaneously as
expected in the bulk system. Varying nx in the range 10–
1000 produces no essential change in results.

For �c2 <�< �c1 , we observe that the smectic order
appears within narrow bands (Fig. 3). Inside these bands,
the number of layers is less by one and the system in this
range of � is in a mixed phase. A plot [Fig. 3(a) and 3(b)]
of ��x; t�, where we treat � as a space and time (MCS)
dependent ‘‘order parameter’’ (configuration averaged
number of layers over a window in x and t), shows bands
FIG. 3 (color online). Plot of ��x; t� as a function of the x=d at
N � 103 � 10. Note that � � 10 in the solid and � � 9 in the sm
function of time. Calculated diffraction patterns for the (c) solid a
interface from superimposed positions of 103 configurations at � �
(high) to blue/light (low). Note the misfit dislocation in the interf
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in which � is less by one compared to the crystalline
regions. Once nucleated narrow bands coalesce to form
wider bands, the dynamics of which is, however, ex-
tremely slow. The total size of such bands grows as � is
decreased. Calculated diffraction patterns [Fig. 3(c) and
3(d)] show that, locally, within a smectic band 
G1

�


G2
in contrast to the solid region where 
G1

� 
G2
� 0.

The total free energy per unit volume of a homoge-
neous solid, F T , which is in contact with a hard-wall and
distorted with a (small) strain "d is given by

F T��;�� �
1

2
K����"2d��� �F ����; (3)

where K���� is an elastic constant and F ���� the free
energy of the (undistorted) triangular lattice in contact
with a hard-wall [20] at packing fraction �. The ‘‘fixed
neighbor’’ free volume vf��; "d� may be obtained using
straight forward, though rather tedious, geometrical con-
siderations [20] so that F ���� � �
 logvf��; 0� and
K���� � @2F ���; "d�=@"2dj"d�0 (see Fig. 2). It is clear
that F T has minima for all � � nl. For half-integral
values of �, the homogeneous crystal is locally unstable.
Noting that �� � nl � 1=2 (Fig. 2 inset), it follows from
Eq. (2) the critical strain "�d � �4nl � 5�=�2nl � 3��2nl �
2� � 1=nl which is supported by our simulation data over
the range 9< nl < 14. At these strains, the solid gener-
ates bands consisting of regions with one less atomic
layer. Within these bands, adjacent local density peaks
of the ‘‘atom’s overlap in the x direction producing a

smectic. Indeed, the overlap
���������
hu2xi

p
=ax maybe calculated

using simple density functional arguments [23] to be
��� 1�=4�

��������������
C0
G2

p
�nl � 1� (where C0 is a constant of

order unity) which, evidently, diverges as 
G2
! 0. For

large Ly, the minima in F T merge to produce a smooth
free energy surface independent of � and more conven-
tional modes of failure, viz., cracks, are expected to
become operative.
� � 0:76 after time t � (a) 5� 105 and (b) 2� 106 MCS for
ectic regions. Arrows show the coalescence of two bands as a
nd (d) smectic regions. (e) Close-up view of a crystal-smectic
0:77. The colors code the local density of points from red/dark

acial region.
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For small Ly, all regions of the parameter space corre-
sponding to nonintegral � are also globally unstable as
belied by the loop in the stress-strain curve (Fig. 2). The
system should therefore break up into regions with nl and
nl � 1 layers for very small "d. Such fluctuations are,
however, kinetically suppressed, as we argue below, mak-
ing thin strips resistant to failure. A superposition of
many particle positions near such an interface [see
Fig. 3(e)] shows that: (1) the width of the interface is
large, spanning about 10–15 atomic spacings and (2)
the interface between nl layered crystal and nl � 1 lay-
ered smectic contains a dislocation[24] with Burger’s
vector in the y direction which makes up for the differ-
ence in the number of layers. Each band of width s is
therefore held in place by a dislocation-antidislocation
pair (Fig. 3). In analogy with classical nucleation theory
[23,25], the free energy Fb of a single band can be written
as

Fb � ��Fs� Ec �
1

8�
b2K log

s
a0

; (4)

where b � ay=2 is the Burger’s vector, �F the free energy
difference between the crystal and the smectic per unit
length, Ec the core energy for a dislocation pair, and K an
elastic constant ( � K� for the perfect triangular lattice).
Bands form when dislocation pairs separated by s >
1
8� b

2K=�F arise due to random fluctuations. Note that
as � ! ��, K ! 0, facilitating band nucleation. Using a
procedure similar to that used in Ref. [8], we have moni-
tored the dislocation probability as a function of �. Not
surprisingly, the probability of obtaining dislocation pairs
with the relevant Burger’s vector increases dramatically
as � ! �c1 and artificially removing configurations with
such dislocations suppresses the transition completely.
Band coalescence occurs by a diffusion aided dislocation
‘‘climb,’’ which at high density implies slow kinetics.
Throughout the two-phase region, the crystal is in com-
pression and the smectic in tension along the y direction
so that � is completely determined by the amount of the
coexisting phases, orientation relationships between the
two phases being preserved throughout. This, together
with the absence of free dislocations in the confined solid,
explains the reversible [26] plastic deformation in Fig. 2.

Apart from constrained hard sphere colloids [17] where
our results are directly testable, a similar fracture mecha-
nism may be observable in experiments on the deforma-
tion of monolayer nanobeams or strips of real materials,
provided the confining channel is made of a material
which is harder and has a much smaller atomic size
than that of the strip [1]. The effect of elasticity and
corrugations of the walls on the fracture process, as
well as its dynamics, are interesting directions of future
study.
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