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Importance of Shear in the bcc-to-hcp Transformation in Iron
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Iron shows a pressure-induced martensitic phase transformation from the ground state ferromagnetic
bcc phase to a nonmagnetic hcp phase at � 13 GPa. The exact transformation pressure (TP) and
pathway are not known. Here we present a multiscale model containing a quantum-mechanics-based
multiwell energy function accounting for the bcc and hcp phases of Fe and a construction of
kinematically compatible and equilibrated mixed phases. This model suggests that shear stresses
have a significant influence on the bcc $ hcp transformation. In particular, the presence of modest
shear accounts for the scatter in measured TPs. The formation of mixed phases also provides an
explanation for the observed hysteresis in TP.
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Pressure-driven phase transformations are ubiquitous
and important for understanding the mechanical re-
sponse of materials. In particular, the ground state crystal
structure of Fe, ferromagnetic body-centered cubic (bcc),
undergoes a pressure-induced martensitic phase transfor-
mation to a hexagonally close-packed (hcp) structure at
� 13 GPa. The measured transformation pressure (TP)
varies greatly [1–3]. Attempts to simulate this transfor-
mation via quantum mechanics [4–8], primarily density
functional theory (DFT), have focused on relative phase
stability, where the TP is approximated by the Gibbs
construction of drawing the line of common tangent
between equations of state of the pure bcc and hcp phases.
Another DFT model [9] mapped out the energetics of a
constrained transformation path between the pure phases,
similar to earlier work on Ba [10]. None of these were
able to explain the large range of measured TPs. Here, we
present a multiscale model containing a first-principles
DFT-based multiwell energy function accounting for bcc
and hcp Fe and a construction of kinematically compat-
ible and equilibrated mixed phases (laminates) to repre-
sent the complicated microstructures often observed in
experiments.

We confine our attention to transformations occurring
at 0 K and therefore the governing principle is energy
minimization. In particular, the formation of microstruc-
ture is driven purely by energetics. We assume the behav-
ior of the material to be nonlinear elastic with energy
density W�F�, where F is the local deformation gradient
[11]. The function W�F� must be invariant under rigid-
body rotations, and therefore it must be of the form W�C�,
where C � FTF and is the right Cauchy-Green deforma-
tion tensor [11]. In addition, if G � SO�3� is the symme-
try group of the crystal in its reference configuration,
then we must have W�FG� � W�F� for all G in G.

We connect with first-principles DFT via the Cauchy-
Born hypothesis [12], which assumes that the crystal
lattice is locally uniformly deformed according to the
0031-9007=04=93(11)=115501(4)$22.50 
deformation gradient F. This hypothesis has been widely
used in the mathematical analysis of martensites [13]. In
principle, the Cauchy-Born hypothesis enables W�C� to
be calculated via 3D periodic DFT. However, the expense
of converged first-principles calculations for Fe preclude
an on-the-fly evaluation of W�C�. Additionally, a tabu-
lated form of W�C� is not feasible due to the fact that C is
6 dimensional. Instead, we consider a special form of
W�C�, constructed below. The objective of this construc-
tion is to obtain a multiwell W�C� with minima at
symmetry-related deformations (variants) of bcc and
hcp iron. All information used in the construction of
W�C� is obtained from first principles.

We begin by considering the kinematics of this mar-
tensitic transformation. The particular transformation
path considered is the well-known Burgers path [14].
Here the hcp lattice is obtained by first applying a shear
deformation to a bcc f110g plane, consisting of an elon-
gation and compression along perpendicular directions,
followed by a shuffle of the deformed f110g planes. We
define the untransformed bcc variant as the identity I.
The formation of an hcp variant from I is represented by
the matrix
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p
�. There exist six f110g planes in the

bcc lattice, resulting in six possible independent hcp
variants UG, where G is an element of the bcc point
group. Each hcp variant can transform back to a bcc
variant by simply reversing the shuffle and the shear
deformation UG along an hcp f0001g plane. From the
six hcp variants obtained thus far, reverse transforma-
tions along multiple f0001g planes produces 12 additional
bcc variants G�1U�1HUG, where H is in the point group
of hcp. Additional bcc and hcp variants could be gener-
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FIG. 1. Calculated bcc and hcp elastic constants as a function
of volume. The c11 and c33 hcp elastic constants are almost
identical throughout the volume range.
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ated via further transformations, however we confine
ourselves to the 19 identified thus far.

The specific form of the energy density assumed is
W�C� � mini�0;...;18Wi�C�, where

Wi�C� � Wi
0�V� 


1

2
�C� Ci�V�
Ci�V��C� C i�V�
: (2)

The index i enumerates the 19 variants described above;
the volume V � Vbcc

����������
detC

p
and Vbcc is the volume of the

undeformed bcc variant; Ci�V� is the deformation of the
ith variant with volume V under hydrostatic pressure
conditions; Wi

0�V� � W�Ci�V�
 is the equation of state
of the ith variant, where by symmetry only two are
unique, corresponding to the bcc and hcp phases; Ci�V�
are the elastic moduli, defined as Ci�V� � @2Wi=@C2

evaluated with C � Ci�V� and at constant V. Note the
elastic constants depend on the specific volume, and
correspond to those at the deformation Ci�V�. For bcc,
Ci�V� is an exclusively volumetric deformation, but for
hcp, these account for the optimal c=a ratio as a function
of V, and therefore contain some shear deformation. This
small dependence on shear is all that is needed, since, to a
first approximation, the variants are considered to be
close to their undistorted configuration. Consequently,
Eq. (2) is a Taylor series expansion of Wi through second
order. The linear term is missing by definition of Ci�V�.

We use first-principles DFT to calculate Ci�V� (specifi-
cally the optimal c=a ratio for hcp as a function of V),
Wi

0�V�, and Ci�V� in Eq. (2). Spin-polarized Kohn-Sham
DFT calculations are performed within the VASP code
[15], where the generalized gradient approximation [16]
is employed to describe electron exchange and correla-
tion. To accurately recover the magnetic and structural
properties of both bcc and hcp Fe, the all-electron pro-
jector augmented wave method [17] is used. Because of
the high precision needed to calculate elastic constants, a
large �24� 24� 24� Monkhorst-Pack k-point grid for
the two atom cell and a 500 eV kinetic energy cutoff for
the planewave basis set is required.

The bcc equilibrium volume, bulk modulus, and mag-
netic moment for Fe are calculated to be 11.43 Å,
172 GPa, and 2:21 
B, respectively, which coincide
well with experimental values of 11.70 Å, 172 GPa [18],
and 2:22 
B [19]. Additionally, the calculated equilib-
rium bcc Fe elastic constants, c11 � 271 GPa, c12 �
145 GPa, and c44 � 101 GPa, are in fair agreement
with experimental values, c11 � 243 GPa, c12 �
138 GPa, and c44 � 122 GPa [18]. We find the equilib-
rium hcp energy to be 64:0 meV=ion above bcc. We
predict the hcp equilibrium volume, bulk modulus, and
c=a ratio to be 10:25 �A3, 293 GPa, and 1.58, respectively.
Although little experimental data exist for hcp, our re-
sults agree with previous first-principles calculations [20].
Experimental hcp elastic constants are not available. The
actual elastic constant data used in Eq. (2) are shown in
Fig. 1. The equations of state Wi

0�V� and the minimum
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energy Cauchy-Green deformation tensors Ci�V� are tabu-
lated for use upon calculation by DFT (not shown). This
completes the definition of the multiwell energy density
W�C� for Fe.

Suppose now that the material undergoes a macro-
scopic deformation �F. Since the above energy density
has a multiwell structure, the minimum energy generally
is not attained for a uniform deformation. Instead, the
material adopts a fine microstructure consisting of a
combination of variants. Unfortunately, at present no
method exists for determining arbitrary optimal micro-
structures. Instead, we consider a special class of micro-
structures known as sequential laminates (e. g., [21,22]).
Such sequential laminates are often observed experimen-
tally [23,24] for martensites.

A simple laminate is a compatible and mechanically
equilibrated combination of two phases arranged in alter-
nating layers. A sequential laminate is a laminate of
laminates spanning a hierarchy of length scales, such
as shown in the insets in Fig. 2. The rank of a laminate
equals the number of levels of lamination. Each layer in
the laminate undergoes a uniform deformation. The de-
formations of adjacent layers are constrained by compati-
bility, i.e., no sliding or gaps between the layers may occur
as a result of the deformation. In addition, the average
deformation of the laminate must equal the prescribed
macroscopic deformation �F. The computational problem
then concerns the determination of the lamination layout,
geometry, and deformation that minimizes the energy of
the crystal under the compatibility and average deforma-
tion constraints. The compatibility constraint precludes
direct optimization of the variant volume fractions so that
the simple Gibbs construction does not apply [25]. The
115501-2



FIG. 2 (color). Pressure vs volume curves for increasing
amounts of shear. The black and gray dashed curves correspond
to �f � 0 and 0.01, respectively; for all other curves the
corresponding �f values are indicated explicitly. The disconti-
nuities in the curves occur as a result of laminate formation.
The insets are examples of predicted microstructure for the
case in which �f � 0:04. The top represents a rank two
laminate formed immediately after the transformation onset;
the microstructure appears to be a rank one laminate, due to
very thin layers within the hcp (green) phase that cannot be
seen. The bottom inset shows the microstructure after an
additional transformation, which is a rank four laminate.
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specific algorithm used equilibrate the laminate and op-
timize its layout is given in [26].

To investigate the effect of shear on the transformation
pressure, we consider the macroscopic affine deformation

�F S��� � �1� ��I
 �
� �f 0
�f � 0
0 0 �

0
@

1
A (3)

where � ranges from 0 to 1 and � is chosen such that
���2 � �2f� � Vf=Vbcc. Vf and �f are the final volume and
final shear, respectively. All components of �FS refer to the
cubic axes of undeformed bcc. This defines a one-
parameter family of combined shear and volume
deformations.

Figure 2 displays the pressure vs volume curves for a
number of values of �f, while the insets are examples of
laminated microstructures. All data in Fig. 2 are gener-
ated with Vf � 0:89Vbcc.

Figure 2 shows shear is required for phase transforma-
tion to occur in this volume range. The discontinuities in
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the P-V curves that appear for �f � 0:02 correspond to
the formation of laminates. The onset of these disconti-
nuities depends sensitively on the amount of shear applied
to the sample, with the onset appearing earlier in the
compression sequence as shear increases. Specifically, a
range of �f from 0.02 to 0.06 produces TPs of 11–25 GPa,
which is in agreement with the range of TPs observed
experimentally. This illustrates the sensitivity of the TP
to small shears, suggesting that the variability in mea-
sured TPs may indeed be due to the different shear states
that exist in experiments, e.g., in diamond anvil cell
powder diffraction studies [1–3].

The laminates shown in Fig. 2 correspond to the struc-
tures formed immediately after drops in the P-V curve
for �f � 0:04. The upper laminate is of rank 2, while the
lower laminate is of rank 4. The volume fraction, orien-
tation, and deformation of each of the variants in the
laminate evolve with increasing macroscopic deforma-
tion. This complex microstructure provides an explicit
physical model of the mixed phases commonly discussed
by experimentalists. In particular, we see that a modest
amount of shear gives rise to a broad range of pressures
over which the material is neither pure bcc nor pure hcp.
This provides a plausible explanation for the ambiguities
at phase boundaries in measured phase diagrams and the
discrepancies between various measurements [1].

To further investigate the properties of this martensitic
transformation, we employ the volume-conserving
deformation �FM�V; �� � ���1� ��Fbcc�V� 
 �Fhcp�V�
,
where � is chosen such that det �FM�V; �� � V=Vbcc.
Here Fbcc�V� � �V=Vbcc�

1=3I and Fhcp�V� �
�V=Vbcc�

1=3�detU�V�
�1=3U�V� (see Eq. (1)) are affine de-
formations that produce specific bcc and hcp variants,
respectively, at a volume V. We consider V=Vbcc ranging
from 0.86 to 1.02 and � ranging from 0 to 1.

Figure 3 displays the energy E�V� per ion, the pressure
P, and the fraction � of the hcp phase for the � that
minimizes the energy at a particular V. E�V� varies
smoothly throughout the volume range, and we see that
the energy is lowered with respect to that of the individ-
ual phases. This stabilization is due to the formation of
the mixed phase microstructure. The Gibbs construction
is also shown for comparison in Fig. 3. This construction,
which we term ‘‘perfect mixing,’’ corresponds to mixing
variants without imposing compatibility constraints and
delivers a lower bound on the energy. In addition to
compatibility constraints, our restriction on the number
of allowed variants further frustrates the system. As a
result, the system cannot laminate arbitrarily, effectively
reducing the accessible configuration space, building in
frustration. It is this frustration that causes the upward
bowing in the E-V curve in Fig. 3.

We also observe a lag in conversion from bcc-to-hcp,
exhibited by an overshoot in the compression required to
produce pure hcp compared to the hcp equilibrium vol-
ume. The transformation onset is at V � 10:8 �A3, much
115501-3



FIG. 3. Fraction of hcp �, pressure P, and energy E�V� per
atom, as a function of volume V for the path FM�V� �
min �W�FM�V; ��
.

VOLUME 93, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S week ending
10 SEPTEMBER 2004
lower than Vbcc. Full hcp conversion is achieved only
after V � 10:0 �A3, well below Vhcp. This overshoot exists
for the perfect mixing case as well; it is simply a con-
sequence of hcp being less stable than bcc at zero pressure.

We also see a pressure drop during the transformation,
corresponding to the bowing in the E-V curve. This
pressure drop implies that as the bcc phase is compressed,
the bcc-to-hcp transformation occurs at � 10:5 GPa,
whereas when the hcp phase is decompressed, the hcp to
bcc transformation occurs at � 5:1 GPa. This suggests
that pressure hysteresis may be simply due to kinematic
constraints rather than kinetics. Additionally, the hystere-
sis width of � 5 GPa is consistent with measured hys-
teresis widths of, e.g., 6.2 GPa [27].

In conclusion, shear may be required to initiate the bcc-
to-hcp transformation in Fe, as shear tends to stabilize
the hcp phase.We predict that the transformation occurs at
larger volumes and lower applied pressures with increas-
ing shear, via the formation of a complex microstructure
consisting of mixed phases. This may account for the
ambiguities in measured phase diagrams and transforma-
tion pressures. We find that compatibility between the
variants frustrates the system and causes the P-V curve
to be nonmonotonic. This behavior in turn may be re-
sponsible for the pressure hysteresis observed in the bcc to
hcp transformation.While we have focused on Fe here, we
expect these findings to apply qualitatively to all mar-
tensitic materials.

We close by pointing out strengths and limitations of
our model. The multiscale model presented here is able to
simulate structures at the micron scale, unlike molecular
dynamics simulations. An additional advantage of our
approach is that arbitrary deformations can be accounted
for, not necessarily limited to volumetric deformations.
This opens up greatly the richness of the phenomena that
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can be explored. Moreover, the approach is entirely pre-
dictive, since all input data come from first principles,
with no calibration or fitting of the model to experiment.
Lastly, the model currently does not yet account for
nucleation, interfacial energies and kinetics, finite tem-
perature, fcc variants, or plasticity, but these effects can
[26] and will be included in future work.
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