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Pattern of Breakdown of Laminar Flow into Turbulent Spots
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The breakdown into turbulent spots is the least understood stage of the laminar-turbulent transition
process. With cellular-automaton stochastic simulations and stability analysis, we show that the pattern
of breakdown in boundary-layer flow bears a connection to laminar instability and may be recon-
structed using macroscopic properties of the transition zone, such as persistence times and transitional
intermittency. We propose experimental tests of our ideas.
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FIG. 1. The laminar-turbulent transition process on a bound-
ary layer in the flow past a semi-infinite flat plate.
The transition to turbulence in a boundary layer (Fig. 1)
has several features which distinguish it from the internal
shear flows [1–3] receiving attention recently: the
Reynolds number R � U�=�, where U, ��x�, and � are
the free-stream velocity, boundary-layer thickness, and
kinematic viscosity, respectively, varies with streamwise
position x. As x increases, laminar flow is destabilized
progressively, leading to a moving, spatially periodic
vorticity pattern (Fig. 2). At larger x, we enter the tran-
sition zone where flat, arrowhead shaped turbulent spots
first appear [5], and travel downstream, widening, length-
ening, and merging to fill the entire boundary layer. Spots
are the building blocks of boundary-layer turbulence, and
their statistics and dynamics contain the physics of the
crossover from unstable laminar to fully turbulent behav-
ior. Numerical simulations and experiments have fol-
lowed the creation and downstream propagation of
single spots in great detail, but the relation of turbulence
to boundary-layer instability has not been understood, in
part because spot birth statistics, involving the detection
of tiny patches of turbulence as they are born as a func-
tion of space and time, is difficult to obtain numerically
or experimentally.

In this Letter we question the conventional wisdom that
spot birth is completely random in time and uniformly
distributed in the spanwise direction. We ask, Does the
regular pattern observed in the precursor to transition to
turbulence give rise to any local regularity in the birth of
turbulent spots? As a direct experimental verification is
difficult, can we connect spot birth distribution to macro-
scopic measures in the transition zone? To answer these
we perform stochastic cellular-automaton simulations of
spot breakdown (birth) and propagation in the transition
zone. Our main finding is that spot birth is clearly related
to the pattern of laminar instability in decelerating flows,
while in the flow over a flat plate the connection is less
clear.We explain the experimentally observed behavior of
turbulent intermittency, ��x� (defined as the fraction of
time the flow is turbulent). We establish that macroscopic
measures like �, the burst rate B, and the persistence time
W of laminar flow can tell us whether the breakdown is
regular (the term is used here to mean that there is a local
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pattern in the breakdown) or random and, if regular, what
the two-dimensional pattern is. Our predictions (Figs. 4–
7) on how these quantities behave are (i) directly testable
in experiment and (ii) of value in inferring spot birth
scenarios from experimental results.

In shear flows, the threshold Reynolds number for
transition to turbulence [2] and the mechanisms trigger-
ing instability depend on the strength q of background
noise. For example, at low q (less than 0.2% of the ki-
netic energy of the flow), a linear instability of the
laminar flow results in growing Tollmien-Schlichting
(TS) waves [6]. The secondary instability of these waves,
denoted here by T2, gives rise to a pattern of aligned
(harmonic) or, more frequently, staggered [subharmonic;
see Fig. 2(a)] vorticity crests [6,7]. At high q, the inter-
action of several modes leads to large transient growth
(due to the non-normality of the stability operator), often
resulting in streamwise streaks [4,8,9]. The secondary
instability (S2) of these streaks gives rise to patterns
such as that shown in Fig. 2(b) [4,10]. So far as we
know, a connection between this stage and the nature of
the transition zone has never been made.

Current wisdom, largely phenomenological, on turbu-
lent spots may be summarized as follows: a turbulent spot
is an almost two-dimensional arrowhead shaped object
(parallel to the wall), which, for a given pressure gradient,
remains self-similar as it grows [11,12]. These features
are similar at any level of q. We define xt, upstream of
which no turbulent spots are born, as the location of onset
of transition to turbulence. IfU is the free-stream velocity
at xt, � the half angle subtended by the spot at the stream-
wise location of its origin, and Uh and Ur the respective
speeds with which its head and rear convect, then the
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FIG. 2. Examples of two-dimensional patterns of disturbance
vorticity observed in a destabilized laminar boundary layer; z
is the spanwise coordinate. (a) T2: a subharmonic secondary
instability of Tollmien-Schlichting waves; (b) S2: secondary
instability of streamwise streaks [4].

FIG. 3. Schematic of the simulation with random spot birth:
according to a Poisson distribution in time, and uniformly
distributed in z.
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nondimensional spot propagation parameter, which ac-
counts for both streamwise and lateral growth,

� � �U�1
r �U�1

h �U tan�; (1)

is constant for a given pressure gradient [11]. The orien-
tation of the flow past a solid object can generate a
streamwise variation in the free-stream velocity. For the
flow past a tilted flat plate, which is under consideration
here, U ’ xm (appropriately nondimensionalized), where
m is a constant defining the pressure gradient. A negative
m denotes an adverse pressure gradient, i.e., decelerating
flow. On a flat plate, Uh ’ 0:9U, Ur ’ 0:5U, and � ’ 10	

(see, e.g., [11]), while in strong adverse pressure gradients
(m � �0:06), Uh ’ 0:9U, Ur ’ 0:4U [13], and � ’ 20	

[14]. Given a particular disturbance environment, the
nature and amplification of instabilities, and the conse-
quent breakdown into spots, depend on Reynolds number
Re�x� alone. It is thus expected that most spots are born
within a short neighborhood downstream of xt; i.e., we
may assume concentrated breakdown around xt [15]. This
is accepted as a good model for spot breakdown, being
borne out repeatedly by indirect inferences made from
experiment.

We realize that the pattern of spot breakdown will
manifest itself in the scenarios for spot merger: if spots
are more closely spaced in the spanwise direction z than
in x, lateral mergers would be more frequent than longi-
tudinal. It can be easily worked out that transition zone
characteristics depend crucially on the merger scenario;
e.g., if lateral mergers rather than longitudinal ones were
to be predominant, the loss of area covered by turbulence
would be greater, so this scenario would result in a slower
realization of full turbulence, for the same mean spot
birth rate. We therefore study different scenarios of spot
birth: (i) mostly regular, with the pattern in �x; z; t� re-
lated to laminar instability; (ii) random, with spots ap-
pearing according to a Poisson distribution in time, and
uniformly in the spanwise coordinate z; and (iii) combi-
nations of the two.We now construct our stochastic model
and show how our results are obtained.

The transition zone (as viewed from above) is discre-
tized into an Lx 
 Lz (200
 400) rectangular grid in x
and z, respectively (Fig. 3). Each site is assigned an
integer ��X; Z; T�, equal to 0 if the flow there is laminar
and 1 if it is turbulent. (Uppercase represents discretized
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quantities.) All spots are born at X � 1, corresponding
to x � xt (distribution over a small streamwise distance
is seen not to affect results significantly). Each spot is
approximated to be triangular, but the precise shape is
found to be immaterial. During each time interval T, the
head of a spot moves forward by two grid locations, while
its rear moves by one location. Simultaneously, the spot
spreads laterally on each side by one spanwise grid loca-
tion, so the aspect ratio Z=X of the grid corresponds to
the tangent of the half angle � of lateral spot propagation.
These are the simplest discrete approximations of the spot
growth described above. Spot statistics are obtained over
5–20
 106 time steps (after achieving a statistically sta-
tionary state) by prescribing a particular rule for spot
generation. Edge effects are avoided by using a periodic
boundary condition in Z.

In regular breakdown, spot birth is periodic in the
spanwise direction and staggered in time. During the first
time interval, one spot is born at every Z � kNz � i, k �
0; 1; 2 � � �Lz=Nz, 0  i  Nz. After Nt time steps, spots
form at Z � kNz � j for harmonic and Z � �k�
1=2�Nz � j for subharmonic breakdown, where j � i�
1. The spot formation rate n is thus � Lz=�NzZNtT�
per unit spanwise length per unit time. This prescription
corresponds to spots forming at the crests of an oblique
pattern of spanwise and streamwise wave numbers � �
2�=NzZ and  � 2�=NtTv, respectively, where v is
the streamwise velocity of the wave crest. For T2 break-
down, we conduct a secondary instability analysis in the
standard manner [16], as described in detail in [17]. From
the obliqueness of the most unstable secondary mode, the
most likely ratio of Nz=Nt is found to be about 2.5 for flat-
plate flow and 4.9 at m � �0:06. The Reynolds numbers
used (600 and 220, respectively, based on boundary-layer
momentum thickness) are consistent with experimental
transition onset. Because of amplitude modulations and
other reasons, the ratio �= of the vorticity crests are
related to, but not completely specified by, the corre-
sponding ratio of the most unstable secondary mode;
we use instability computations only to provide an esti-
mate. Note that the pattern we speak of is a purely
localized entity in time and space. Instabilities are sensi-
tive to randomness in the environment [18], so averaged
over long times, breakdown is uniform in the spanwise
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direction and random in time. In the simulations, the
phase of the oblique wave is randomized with a small
probability (1%), and a fraction (5%) of the spots are
generated randomly; results are insensitive to doubling or
halving these numbers.

The transitional intermittency obtained from the simu-
lations with a regular subharmonic pattern as estimated
from T2 is shown in Fig. 4(a) to closely follow experi-
mental results in a highly decelerating flow. The simula-
tions at other similar pressure gradients (not shown)
match corresponding experiments equally well. For ran-
dom spot generation, the intermittency � is given by

� � 1� exp��n��x� xt�2=U�; (2)

n being the mean spot birth rate per unit time per unit
spanwise length. For convenience of data presentation, we
define an intermittency parameter F �

�������������������������
� ln�1� ��

p

which varies linearly with x in (2) [15]. Shown in
Fig. 4(b) are simulation results in terms of F for various
birth scenarios. In the early stages, when the spots are too
small to ‘‘see’’ each other, the intermittency is indepen-
dent of the nature of breakdown, as expected. At higher x,
for the same mean breakdown rate and identical spot
growth, the character of the intermittency is seen to be
very different, telling us that spot merger plays a large
role in transition to turbulence. This is a new insight,
since existing literature takes the mean rate of birth to
define the transition zone. The downstream increase in
slope usually seen in experiments on decelerating bound-
ary layers, unexplained until now, is seen to be character-
istic of dominant longitudinal merger, where the head of
one spot merges with the rear of the one ahead.

For a flat plate, on the other hand, experiments at low q
seem closer to a random birth scenario [Fig. 5(a)]. Since
0 0.5 1
η

0.5

1

1.5

2

2.5

F

0 0.5 1
η

0.2

0.4

0.6

0.8

1
(a) (b)

0.22

0.63

0.89

0.98

γγ

FIG. 4. (a) Intermittency in a decelerating flow, m � �0:06.
# is streamwise distance scaled by transition zone length. Solid
line: stochastic simulation, with Nz � 49; Nt � 10, similar to
the dominant secondary mode; symbols: experiment [19].
(b) The parameter F for data in (a). Also shown are the
simulation results of random breakdown (long dashes), and of
a regular breakdown where lateral merger would be dominant,
Nz � 10; Nt � 40 (dot-dashed line). Experimental error is
likely to be significant at either end of the transition zone,
since switches from laminar to turbulent flow are difficult to
distinguish. Also, when �� 1, F depends sensitively on �, so
errors appear amplified.
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the instability is less oblique, regular breakdown, too,
leads to a combination of lateral and streamwise merger
similar to random spot birth. Also, the scope for random-
ness is higher since (i) we find the obliqueness to be a
strong function of background disturbance amplitude,
unlike in decelerating flow, and (ii) the instability is
weaker, and the unstable region longer [14,22]. At higher
levels of free-stream disturbance, the S2 route takes place
[21] for m � 0; Nz=Nt is estimated from [23] to be 5.
Simulations with this ratio show an excellent agreement
with the measurements [21] at a free-stream turbulence of
1.5% [Fig. 5(b)].We confirm that less stringent constraints
of concentrated breakdown, e.g., as shown in Fig. 5(a), do
not change the qualitative behavior for any case. In decel-
erating flows it was conjectured by [24] that rapid tran-
sition is due to breakdown once every TS cycle. Our
position is that the breakdown is dictated by a secondary
pattern, e.g., T2 or S2 (not the TS which lose their identity
well upstream); we explain not only the extent of the
transition zone, but the qualitative behavior within it.

The spot birth scenario can be reconstructed with the
help of several other easily measurable quantities, such as
the burst rate B, defined here as the number of switchovers
from laminar to turbulent flow per unit time at a given
location; and the persistence time distribution of laminar
flow. For a Poisson process, we can derive that B/�1�
���� ln�1����1=2: Our simulations with a random break-
down give rise to burst rates which agree well with this
relationship (Fig. 6). Any deviation from this behavior is a
sign that spot breakdown is not random: the more the
regularity, the more symmetric the distribution with re-
spect to � � 0:5. The probability density function of the
persistence timeW, defined here as the extent of time that
the flow continuously remains laminar at a given x, is
plotted in Fig. 7. Strings of zeros between two 1’s are
measured in the middle of the span to avoid repeated
input from a given spot. With random spot birth, an
exponential decay is expected and obtained, whereas in
the case of regular breakdown a large modulation and a
flat portion are evident in the early and middle stages of
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FIG. 5. Intermittency in flat-plate flow. (a) T2 route: circles,
experiment [20]; solid line, regular breakdown; Nz=Nt � 2:5;
long dashes, random breakdown; triangles, random spot birth,
distributed over X � 1 to 10. (b) S2 route: symbols, experiment
[21]; line, regular breakdown; Nz=Nt � 5.
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different scenarios of spot birth. The regular pattern conforms
to subharmonic T2.
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transition, respectively. The distribution and its down-
stream variation are distinctive (neither resembling a
power law nor a Poisson process), and can be used to
define spot birth effectively. The other persistence time,
of turbulent portions (being independent of statistics), is
uninteresting.

To summarize, stochastic cellular-automaton simula-
tions of spot generation and propagation in transitional
boundary layers have been conducted. In conjunction with
experimental measurements, the new approach can help
one to understand the transition to turbulence. In highly
decelerating flows, a locally regular pattern of break-
down into turbulent spots as dictated by our computations
of secondary instability gives rise to transitional inter-
mittency behavior as observed (and unexplained up to
now), whereas measurements in flat-plate flow seem
more consistent with random breakdown. The scenario
of merger of turbulent spots is shown to be an important
player in the laminar-turbulent transition process.
Remarkably, the pattern of spot birth may be inferred
from macroscopic characteristics of the transition zone.
To test our predictions, we advocate experimental mea-
surements of the distributions of B, W, and � in the flow
past plates subjected to different, especially adverse,
pressure gradients. In this work, we have used Navier-
Stokes equations for computing secondary instability,
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FIG. 7. Probability density function of persistence time of
laminar flow at (a) � � 0:1 and (b) � � 0:5. Dashed line,
random breakdown; solid line, 90% regular (subharmonic
T2); long dashes, 50% regular. Thin dot-dashed line, predomi-
nant lateral merger as in Fig. 4(b).
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and a phenomenological model of spot growth thereafter.
Direct solutions of the Navier-Stokes equations, increas-
ingly feasible at Reynolds numbers large enough for
transitional flow, will prove illuminating, especially
with respect to spot propagation, even if entire statistics
are not possible to obtain.
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