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Desynchronization Waves and Localized Instabilities in Oscillator Arrays
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We consider a ring of identical or near-identical coupled periodic oscillators in which the connections
have randomly heterogeneous strength. We use the master stability function method to determine the
possible patterns at the desynchronization transition that occurs as the coupling strengths are increased.
We demonstrate Anderson localization of the modes of instability and show that such localized
instability generates waves of desynchronization that spread to the whole array. Similar results should
apply to other networks with regular topology and heterogeneous connection strengths.
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In this Letter, we discuss the synchronization of a large
number of near-identical oscillators that are locally
coupled with connections of random strength. Synchro-
nization in networks of coupled oscillators has recently
received considerable interest [1] and has relevance in
fields such as biology [2], chemistry [3], lasers [4,5],
and communications [6]. Usually, the networks studied
have been assumed to have connections of equal strength.
In practice, the connections between different oscillators
may have different strengths, and in some cases this
strength could have a large spread (e.g., in biological
systems). A model and analysis method has been pro-
posed by Pecora and Carroll [7] to systematically deter-
mine the stability of the synchronized state in a network
of identical coupled oscillators. This method, the master
stability function, has been used to study the synchroni-
zation properties of different networks [8,9]. Deng et al.
[10] have obtained, using the master stability function
technique, conditions for the distribution of the connec-
tion strengths that yield average stability of the synchro-
nized state. Galias and Ogorzalek [11] have studied the
effect of adding small perturbations to the coupling
strengths in relatively small arrays of coupled chaotic
oscillators. Denker et al. [12] have studied the effect of
small coupling strength heterogeneity in networks of
pulse-coupled oscillators. Our approach in this Letter
will be different: we consider the coupling strengths to
have a relatively large spread and will discuss phenomena
that can be expected when a large number of periodic
oscillators are coupled in such a network. In particular,
we will see that, as the coupling strength is increased, the
oscillators desynchronize in a localized region. The lo-
calization results because the connection matrix has ran-
dom components and the eigenvectors of this matrix are
Anderson localized [13,14]. The effect of the localized
instability spreads as a wave throughout the array, even-
tually resulting in an ordered state. Remarkably, in the
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case where the oscillators are not identical, the final state
of the locally unstable system was found to be, for the
system we considered, more ordered than in the case
where the system is stable.

We consider a model system of N identical dynamical
units, each one of which, when isolated, satisfies _Xi �
F�Xi�, where i � 1; 2; . . . ; N, and Xi is the d-dimensional
state vector for unit i. (The case of nearly identical units
is considered at the end of this Letter. See also [15].) The
oscillators, when coupled, are taken to satisfy (e.g., [7])

_X i � F�Xi� � g
XN
j�1

GijH�Xj�; (1)

where the coupling function H is independent of i and j,
and the matrix G is a symmetric Laplacian matrix
(
P

jGij � 0) describing the network connections. The
constant g determines the global strength of the coupling.

There is an exactly synchronized solution of Eq. (1),
X1 � X2 � � � � � XN � s�t�, whose time evolution is the
same as the uncoupled dynamics of a single unit, _s �
F�s�. In this Letter we will be concerned with the case
where the synchronized state is periodic, s�t� T� � s�t�.
The stability of the synchronized state can be determined
from the variational equations obtained by considering an
infinitesimal perturbation �i from the synchronous state,
Xi�t� � s�t� � �i�t�,

_� i � DF�s��i � g
XN
j�1

GijDH�s��j: (2)

Let � � ��1; �2; . . . ; �N�, and define the d	 N matrix
� � ��1; �2; . . . ; �N� by � � �LT , where L is the or-
thogonal matrix whose columns are the corresponding
real orthonormal eigenvectors of G; GL � L�, � �
diag��1; �2; . . . ; �N� where �k is the eigenvalue of G for
eigenvector k. Then Eq. (2) is equivalent to
2004 The American Physical Society 114101-1
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_� k � �DF�s� � g�kDH�s���k: (3)

The quantity �k is the weight of the kth eigenvector of G
in the perturbation �. The linear stability of each ‘‘spa-
tial’’ mode k is determined by the stability of the zero
solution of (3). By introducing a scalar variable � � g�k,
the set of equations given by (3) can be encapsulated in
the single equation,

_� � �DF�s� � �DH�s���: (4)

The master stability function ���� [7] associated with
Eq. (4) is its largest Lyapunov exponent [or equivalently
for our case of periodic s�t�, the largest real part of its
Floquet exponents]. This function depends only on the
coupling function H and the chaotic dynamics of an
individual uncoupled element, but not on the network
connectivity. The network connectivity determines the
eigenvalues �k (independent of details of the dynamics
of the chaotic units). The stability of the synchronized
state of the network is determined by �
 � supk��g�k�,
where �
 > 0 indicates instability.

As an illustrative example, we consider periodic
Rössler oscillators, obeying the equations

_x � ��y� z�; _y � x� 0:2y;

_z � 0:2� z�x� 2:5�:
(5)

In terms of our previous notation, d � 3, and X �
�x; y; z�T . The master stability function for this system
is shown in Fig. 1. As seen in this figure, ���� approaches
zero from negative values as � ! 0�. This is a general
feature for systems where the individual, uncoupled units
are stable limit cycle oscillators. We also see that ����
crosses from negative (stable) values to positive (un-
stable) values at a critical � value (� � 4:15). The exis-
tence of such a transition is a robust feature that depends
on the type of coupling and oscillator.

We now consider a network of N of these oscillators
nearest-neighbor coupled in a ring, such that the strength
of each individual link is random. The coupling strengths
are obtained from an independent and identically distrib-
uted random sequence faig

N
i�1. The matrix G is then
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FIG. 1. Master stability function ���� versus � for Eqs. (5).
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(6)

where bi � �ai�1 � ai� for i � 1; . . . ; N (we take
a0 � aN).

The eigenvectors of the matrix G determine the pos-
sible desynchronization patterns. It is known that the
eigenvectors of certain types of random matrices are
exponentially localized (e.g., Anderson localization
[13,14]). In our case, the eigenvector fuigNi�1 with eigen-
value � satisfies

ti�1 � a�1
i�1��� ai � ai�1 � ait

�1
i �; (7)

where ti � ui=ui�1.Viewing Eq. (7) as a random dynami-
cal system for ti, we find numerically that, in our case,

� � lim
n!1

1

n

Xn
i�0

log�jtij� (8)

exists and is independent of the initial condition and noise
realization. Eigenvectors of (6) tend to have a localized
amplitude peak at some location i0 and decay as juij /
e�ji�i0j away from the peak; ��1 is thus the localization
length. (See [14].)

We choose the ai’s to be uniformly distributed in (0.1,1)
(note that any multiple of this would lead to the same
eigenvectors). (Since ai � 0:1, we avoid the possibility
ai � 1 that would effectively disconnect the network.)
The effects we will describe for this network should be
regarded as an example of what could be expected in
more general networks with random coupling. In Fig. 2(a)
we show the eigenvector with the largest eigenvalue for a
realization of the matrix G using N � 500. Figure 2(b)
shows the localization length ��1 as a function of �
calculated using Eq. (8). The eigenvectors are seen to be
i
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FIG. 2. (a) Eigenvector ui for the largest eigenvalue � � 3:61
for a particular realization of the matrix G in (6) with N �
500. (b) Localization length ��1 calculated using Eq. (8).
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sharply localized for the largest eigenvalues, and become
less localized as the eigenvalues decrease.

As the coupling strength g is increased, the eigenvec-
tors with the largest eigenvalue become unstable. These
eigenvectors have the smallest localization length [see
Fig. 2(b)]. We will now describe what occurs in this
situation. We fixed the same realization of the matrix G
used in producing Fig. 2(a). The four largest eigenvalues
are 3.61, 3.41, 3.38, and 3.30. For g � 1:24 the eigenvec-
tor with the largest eigenvalue is unstable, and the next
two eigenvectors are barely unstable (� � 4:47, 4.23, and
4.19 in Fig. 1). We start with initial conditions near the
synchronized state and then let the system evolve accord-
ing to Eq. (1). In Fig. 3 we show snapshots of xi as a
function of the site index i for six successively increasing
times.

Starting from a nearly synchronized state [Fig. 3(a)],
the oscillators desynchronize at the location [see
Fig. 2(a)] of the localized mode [Fig. 3(b)]. The desynch-
ronization spreads as a wave to farther regions of the
array [Figs. 3(c)–3(e)]. At the end, the domain of the
wave covers the entire array [Fig. 3(f)]. This process is
dominated by the most unstable mode. The other two less
unstable modes can be seen as tiny defects at i � 327, 402
in the otherwise smooth wave. (The effect of these less
unstable modes is most evident in Fig. 3(c). They also
have a discernible, although small, effect in the final state
[arrows in Fig. 3(f)].)

The final state and the process leading to it can be
understood in terms of the phase of the oscillators.
Define the phase !�i; t� � 2"fn�i; t� � �t� t��i; t��	
�t��i; t� � t��i; t��

�1g, where t��i; t� � maxfs : xi�s� �
0; _xi > 0; s � tg, t��i; t� �minfs : xi�s� � 0; _xi > 0; s> tg,
and n�i; t� is an integer chosen so that ! is a continuous
4
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FIG. 3. Plots of the x coordinate of oscillator i versus the site
index i, at times (a) 0, (b) 1400, (c) 2800, (d) 4200, (e) 5600,
and (f) 10 000. All the plots have the same scale as (e).
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function of t and that !�i� 1; t� is close to !�i; t� for all i.
Figure 4 shows two snapshots of the x coordinate and the
phase as defined above as a function of i (the i origin was
displaced so that what happens opposite the location of
the unstable mode can be observed clearly, and for each
time a constant was added to ! so that maxi! � 0). As
can be observed in the Figs. 4(a) and 4(c), a region with a
constant phase gradient expands on both sides of the
unstable mode. In the final state [Figs. 4(b) and 4(d)]
the phase has a minimum at the location of the unstable
mode and increases linearly on both sides reaching a
maximum at the opposite end of the ring. This phase
profile increases uniformly with time.

The cause of this phenomenon is that, as the oscillators
in the region of the unstable mode desynchronize, they go
to limit cycles that have a slightly lower frequency than
that of the original orbit. Oscillating at a slower pace than
the others, they drag the adjacent oscillators, and these
drag theirs in turn, continuing until an equilibrium is
reached. An equation describing approximately the evo-
lution of the phase of the oscillator at location # and time
t, !�#; t�, in a chain of diffusively coupled oscillators is
given in the continuous limit by [16]

@!
@t

� a
@2!

@#2 � b
	
@!
@#



2
� w�#�; (9)

where w�#� is the frequency of the oscillator at location #,
and a and b are constants. If this frequency is sufficiently
smaller (larger) in a localized region and b is negative
(positive), the equation predicts the development of
waves that emanate from that region. The phase profile
resulting from such forcing in a small region centered at
the origin �j#j< l� can be approximated for large # and t
as [16]

!�#; t� � w0t�max�0; k�vt� j#j��; (10)

where w0 � w�#� for j#j> l, and k and v depend on a and
0
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FIG. 4. Plots (a) and (b) show the x coordinate of oscillator i
versus the site index i for times 3750 and 9660. Plots (c) and (d)
show the phase of oscillator i at the same times as for (a) and
(b), respectively. Compare with Eq. (10).

114101-3



5000

0
4

-4
-8

i

xi

250

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

FIG. 5. Each plot shows the x coordinate of oscillator i as a
function of the site index i. The time is 0, 1400, 2800, 4200,
5600, and 9970 for plots (a) to (f) and similarly for plots (g) to
(l). A parameter mismatch was introduced in the oscillators.
(a)–(f): All the modes are stable. (g)–(l): The pattern is
organized by an unstable mode as in Fig. 3(f). All the plots
have the same scale as (e).
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b and w�#�. For appropriate k and v, Eq. (10) agrees well
with Figs. 4(c) and 4(d).

In the example presented above, the pattern created by
the unstable mode can be regarded as a more disordered
synchronization than that of the original identical syn-
chronization. However, in realistic situations, an unstable
mode can actually make synchronization more orderly. In
real systems, small differences in the parameters or small
noise are expected. Under these circumstances, the differ-
ent oscillators will be subject to small perturbations. The
modes with eigenvalues close to zero have a master
stability function close to zero (see Fig. 1) and also are
nearly unlocalized [see Fig. 2(b)]. Thus, the phase of each
oscillator will be subject to perturbations whose projec-
tion onto the nearly unlocalized modes are only very
weakly damped. The identical synchronization of the
array is thus spoiled by mismatch or noise. As an illus-
tration, we randomly perturb the parameters of the differ-
ent oscillators, so that they lie within �3% of the original
parameters. We then solved Eq. (1) with g � 1:1 and g �
1:24. For g � 1:1, all the modes are stable; in the case g �
1:24, three modes are stable as discussed above. In
Figs. 5(a)–5(f) we show snapshots of the case g � 1:1,
and in Figs. 5(g)–5(l) we show the corresponding snap-
shots for the case g � 1:24. When all of the modes are
stable, the system exhibits a state in which there is erratic
slow variation of the xi with i. When there is an unstable
mode, however, a more organized state is reached. If one
picks two different oscillators j and k, they will satisfy
asymptotically Xj�t� )� � Xk�t�, where ) is a simple
function of j and k [see Fig. 4(d)]. Thus the oscillators
are pairwise lag synchronized [17]. In realistic large
114101-4
arrays of periodic oscillators, it might be convenient to
have one unstable mode. Our results suggest that this
mode could, despite its localized nature, induce global
organization of the system (Fig. 5).

In conclusion, we find that large arrays of periodic
oscillators locally coupled by connections of randomly
heterogeneous strength can experience a desynchroniza-
tion transition characterized by the appearance of un-
stable Anderson localized modes. Furthermore, we find
that, past the transition, the localized mode might play
the key role in organizing the final global pattern of the
system oscillations.
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