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Phase-Space Invariants as Indicators of the Critical Behavior of Nanoaggregates
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A phase-space approach is proposed for molecular dynamics simulations, which serve as a bridge
between detailed descriptions of microscopic world and macroscopic properties of matter. The
introduction—aside from the angular momentum of spatial rotations— of other ‘‘hyperangular’’
momenta (the overall grand angular momentum of a cluster of particles and those describing the
deformation and rearrangement modes) permits one to analyze different degrees of freedom and to
extract, from simulation data, a kinetic energy partition in terms of phase-space invariants. Model
calculations illustrate how these provide specific signatures of critical behavior, such as energy
thresholds for openings of chaotic pathways in small clusters and for phase transitions in
nanoaggregates.
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The dynamics of aggregates constituted by a large
number of particles is currently simulated by often ex-
tensive computer generated trajectories based on classical
mechanics, quantum mechanical treatments being not
likely to be extendable to systems containing more than
a few particles. An ample phenomenology is being accu-
mulated regarding signatures of chaotic versus regular
behavior [1–4] and manifestations of phenomena which
in small aggregates are seen as the nano- or meso-scale
analogues of the phase transitions occurring in macro-
scopic systems [5–9]. To assist in the understanding and
use of the voluminous body of data coming out of such
classical molecular dynamics simulations, here we pro-
pose to exploit some progress essentially inspired by
developments in the (exact) quantum mechanical ap-
proach to few-body problems. Besides serving for pin-
pointing the above mentioned phenomena and for
contributing as interpretation tools of molecular dynam-
ics simulations, the analysis is also of perspective value
for the formulation of approximate quantum treatments.

The quantum mechanical approach relies upon coor-
dinate representations based on moments of inertia and
deformation parameters and suggests a search for invari-
ant quantities [10–12]; their classical counterparts have
been recently illustrated following individual classical
trajectories of small cluster dynamics [13]. The further
step, which we take here, involves moving towards global
properties of an ensemble of particles and studying fea-
tures, such as specific heats and phase transitions [5–8],
which require long-time averages over batches of trajec-
tories. Our examples will consider microcanonical sys-
tems [8], as appropriate for nanoaggregates. Most of
previous work focused on invariants in the configuration
space, but since classical simulations provide instanta-
neous full phase-space information (typically the
Cartesian coordinates and momenta of individual parti-
cles), our aim is to extract phase-space invariants in order
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to compact the available information. We will show how
the concept of the so called hyperangular momenta
(phase-space quantities generalizing the grand angular
momentum introduced by Smith for a system of particles
[14]) can lead to the definition of other invariants, asso-
ciated to the deformation and rearrangement modes,
which can be straightforwardly computed by quantities
available in any current molecular dynamics simulation
software. This approach allows us to present a partition of
the kinetic energy into terms including not only those due
to the rotation of the system as a whole, and those due to
size and shape variations (the overall breathing and de-
formation contributions, respectively) [11,12], but also
those arising out of particle interchanges (the kinematic
rotations [10–12,15–23]). Two examples, for three and 13
particles bound by Lennard-Jones binary forces (simulat-
ing well studied clusters such as Ar3 [1–3] andAr13 [5,6]),
will be presented to demonstrate the relative role of
various terms: in particular, the deformation and re-
arrangement contributions are expected to provide char-
acteristic signatures in correspondence of onsets of
chaotic behavior and of phase transitions.

According to the hyperspherical view of classical dy-
namics, initiated in Ref. [13], the motion of an N-body
system is described in a 3� �N � 1� hyperspace as that of
a vector of variable length � (the hyperradius, a quantity
measuring the total inertia I � 2M�2, where M is the
total mass of the system and I is the sum of its three
principal moments of inertia I1, I2, I3). The total kinetic
energy T in the center-of-mass frame is then expressed as
the sum of two terms [14]

T � T� � T�;

where

T� �
P2
�

2M
; T� �

�2

2M�2 : (1)
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Here, P� � M _� � Md�=dt is the linear momentum con-
jugated to the hyperradius [14], so the first term accounts
for the overall breathing of the system. The second term is
associated to the grand angular momentum �, the modu-
lus of the �3N � 3� � �3N � 3� skew-symmetric tensor �
[14] containing angular momentumlike elements which
depend on readily available quantities (the instantaneous
coordinates and velocities of the particles). The square of
� is the sum of the squares of all the elements �m of this
tensor:

�2 �
X�3N�3��3N�4�=2

m�1

�2
m:

Moreover, the terms �m can be partitioned into physi-
cally interesting groups in order to obtain the correspond-
ing partition of the T� component [see Eq. (1)] of the total
kinetic energy T. From this perspective, the hyperspher-
ical view of classical mechanics allows us to look at the
dynamics of a system as at the sharing of the kinetic
energy among different kinds of contributing motions
that are closely related to the representation given by
the symmetric hyperspherical coordinates, widely used
in quantum mechanics [22,23].

The instantaneous particle coordinates and velocities
are ingredients of � in very much the same way as of the
ordinary (spatial) angular momentum, for which � is a
generalization. Indeed, in the three-dimensional physical
space we have the modulus J of the conventional angular
momentum vector J:

J2 � J2x � J2y � J2z ;

where Ji (i � x; y; z) are the three components of J. Each
component Ji is obtained as the sum of N terms that are
components of the single particle angular momenta along
the i-axis. These N terms are the contributions to Ji from
the individual particles. The quantity J is a constant of
the motion, and the property for J of being a phase-space
invariant under both spatial (external) rotations and kine-
matic rotations (particle rearrangements) is obvious. The
kinematic (or internal) rotations are rotations in an ab-
stract �N � 1�-dimensional hyperspace (the so called kin-
ematic space) and deal with those internal motions of
particles which leave unaltered I1, I2, and I3. We therefore
construct the kinematic angular vector K dual to J such
that the square of its modulus K is

K2 �
X�N�1��N�2�=2

n�1

K2
n;

where Kn are the components of K in the kinematic space.
Each component Kn is the sum of three terms measuring
the contributions to Kn coming from the three Cartesian
axes in the physical space. One can prove that the quantity
K (to be called the kinematic angular momentum) is also
a phase-space invariant under both spatial rotations and
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kinematic rotations. Finally, it is possible to define the
angular momentum L� associated with the deformation
modes of the motion of the particles, i.e., with the varia-
tions of the principal moments of inertia I1, I2, I3. To this
end, it is suitable to introduce the singular values �1, �2,
�3 of the system via the formulas [10–13,21]

�2
1 �

I2 � I3 � I1
2M

; �2
2 �

I1 � I3 � I2
2M

;

�2
3 �

I1 � I2 � I3
2M

:

They are tied to the global properties of the N-body
system, which are invariant under kinematic rotations:
its content �2

1�
2
2�

2
3 (the volume in an (N � 1)-

hyperspace), its surface area �2
1�

2
2 � �2

1�
2
3 � �2

2�
2
3, and

its perimeter �2
1 � �2

2 � �2
3 (the latter is seen to be �2).

The variation in shape is described by the phase-space
invariant L� (the modulus of the vector L� in an abstract
three-dimensional space of the triples of singular values)
which is proposed to be determined from the relation

�L�=M�2 � ��1
_�2 � �2

_�1�
2 � ��1

_�3 � �3
_�1�

2 � ��2
_�3

� �3
_�2�

2:

The momenta J, K, and L� allow us to define further
quantities playing the physical role of kinetic energy
terms:

TJ �
J2

2M�2 ; TK �
K2

2M�2 ; T� �
L2
�

2M�2 : (2)

The terms TJ, TK, and T� are instantaneous invariants in
the phase space [like T� and T� given by Eq. (1)]. Just as
TJ accounts for contribution to the kinetic energy from the
physical angular momentum, TK and T� play the same
role regarding kinematic rotations and shape deforma-
tions. The suggested partition of T� is [24]:

T� � TJ � TK � T� � Tac;

which defines through Eq. (1) and Eq. (2) another instan-
taneous invariant, the angular coupling energy Tac: it
accounts for non separability and contains, besides the
familiar Coriolis-type couplings between spatial rota-
tions and deformation modes, also the corresponding
one between the latter and kinematic rotations [10].

This well-defined separability of degrees of freedom is
proposed as a physically motivated alternative for aggre-
gates to the usual (vibro-rotational) one of the molecular
modes, which leads, for example, to the application of the
principle of the equipartition of energy in the theory of
heat capacities. Other schemes are being introduced and
classified according to the given characteristics of the
system in question (a rigorous analysis can be performed
of these additional schemes [10]). We will apply such a
separation of energy modes to three-atom and 13-atom
systems with atoms interacting by a Lennard-Jones (12,6)
113402-2
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pairwise potential [1–7,13]. These are thought to be rea-
sonable models for rare gas clusters such as Ar3 [1–3] and
Ar13 [5,6]. The data in Fig. 1 correspond to the case of
zero spatial angular momentum J: each is the result of
averagings over more than 50 trajectories and over long
enough integration times [25] to allow for equilibration.
This procedure is to be considered a simulation of a
microcanonical ensemble [8]. Such an average of the
kinetic energy T is denoted as hTi and its dependence
on the total energy is usually referred to as the caloric
curve [26].

The left panels refer to Ar3. Such a cluster already at a
relatively low energy exhibits chaotic behavior, the tran-
sition to chaos being measured from a growth of the
Lyapunov exponent (an index of sensitivity of separation
of trajectories for variation of the initial conditions, see
Refs. [1–3] and references therein). On the other hand, a
possible phase transition to be pinpointed by a growth of
the Lindemann factor (a configuration space measure of
fluctuations in the interatomic distances, see Ref. [7] and
references therein) is poorly observable for such a small
system. In clusters of larger sizes, the Lindemann factor is
often taken as a signature for occurrence of phase tran-
sitions. Some other indicators of chaos and phase transi-
tions in clusters have also been developed in the literature
([1,2,4–6,9] and references therein). The Ar3 system has a
global minimum at �3� (in the reduced units of Fig. 1
[25]) corresponding to an equilateral triangle, while a
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FIG. 1. Molecular dynamics simulations of clusters of three
atoms (left panels) and of 13 atoms (right panels), with a
Lennard-Jones (12,6) pairwise interaction for J � 0. The upper
panels show the ‘‘caloric curve’’ hTi (the microcanonically
averaged kinetic energy) and the terms of our partition hTKi,
hT�i, hTaci, and hT�i as functions of the total energy. The middle
panels show the dependence on the total energy for two
characteristic indicators of classical cluster dynamics, the
Lyapunov exponent [1–3] and the Lindemann factor [7]. The
lower panels amplify features already apparent in the upper
panels, reporting microcanonical averages of the ratios of the
various contributions.
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saddle corresponding to a collinear configuration occurs
at �2:031�. A decrease in the growth of the caloric curve,
caused by an opening of the role of an additional path to
sample regions of the configuration space by transversing
the linear saddle, accordingly shows up in this energy
range. For an extensive treatment of chaos in Ar3, see
Refs. [1,2].

The upper left panel shows that for this small cluster of
atoms, most of the contribution to the caloric curve
comes from the deformation modes and that the role of
the kinematic rotations is modest, at least at low energies.
Very interesting is the observation of how these roles vary
with the energy: when the caloric curve decelerates its
growth, both the Lyapunov exponent and the Lindemann
factor provide signature of onset of chaos and of phase
transitions respectively: a rise of the contribution from
the kinematic rotations shows up at the expense (at least
in relative terms) of their coupling with the deformation
modes.

The same type of results is presented in the right panels
of Fig. 1, for the case of a 13-atom Lennard-Jones cluster,
which is found to exhibit —from the viewpoint of the
picture emerging from this study—the behavior paradig-
matic of a cluster of moderate size. For such clusters, there
is a phase transition clearly apparent in a rise of the
Lindemann factor in correspondence of a slowing down
in the growth of the caloric curve. This feature is well
documented for Ar13 [5]. Our analysis adds insight to the
picture. Prominent is a decrease in the relative role of the
hyperradial breathing mode hT�i: this appears to be typi-
cal of all systems at even moderate complexity (this
feature may change at higher energies where channels
open up for drastic rearrangements or even break-downs).
Again a rise of the contribution of the kinematic rota-
tions, which are progressively decoupled from the defor-
mation modes, has to be noted. It can be magnified by
considering derivatives of the caloric curve, which would
be microcanonical analogues of the heat capacities for
canonical simulations.

We have conducted a systematic exploration of the
applicability of these tools, which we believe significant
to extract physically relevant features hidden in molecu-
lar dynamics simulations, to clusters of different sizes
and nature, also possessing nonzero spatial angular mo-
mentum J. These additional studies have confirmed the
trends already apparent in Fig. 1. Comparison of the left
and right panels yields an exemplification of the fact that,
regarding relative roles of the terms of the partition, hTKi
increases with the number N of particles in harmony with
larger dimension of the kinematic space where the vector
K acts. Further documented is the effect of a growth in
the spatial angular momentum J, which is to shift all
features to higher energies due to an increase of centrifu-
gal barriers.

In this Letter, we have shown in detail how a partition
of the kinetic energy of an N-body classical system can be
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found upon the introduction of hyperangular momentum
tensors. The kinetic energy has been partitioned into five
contributions T� [Eq. (1)], TJ, TK, T� [Eq. (2)], and Tac

corresponding to different modes of the system. All the
contributions can be calculated from ingredients com-
monly available in classical trajectory simulations by
building up the hyperangular momentum tensors such
as �, J, K, and L� and by summing the squares of the
judiciously chosen elements. Examples of the partition of
the kinetic energy for trajectories for Ar3 and Ar13 clus-
ters have been discussed in the paper and shown to point
at correlations between the features of the partition and
the signatures of chaotic behavior and phase transitions.
Other new partitions are being classified [10] in terms of
phase-space instantaneous invariants, an ultimate goal
being the extraction of those which remain adiabatically
invariant [27] under given conditions of practical interest
both in the dynamics of nanoaggregates and also in
general for reactive systems [28]. This would contribute
to elucidating the underlying physics and possibly to
suggesting propensities to be exploited as approximate
conservation laws, also to simplify the formidable task of
the quantum mechanical extension.
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