Enhanced Electron-Capture Decay Rate of ⁷Be Encapsulated in C₆₀ Cages

T. Ohtsuki,¹ H. Yuki,¹ M. Muto,¹ J. Kasagi,¹ and K. Ohno²

¹Laboratory of Nuclear Science, Tohoku University, 1-2-1 Mikamine, Taihaku, Sendai 982-0826, Japan

²Department of Physics, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan

(Received 18 February 2004; published 9 September 2004)

The decay rate of ⁷Be electron capture was measured in C₆₀ and Be metal with a reference method. The half-life of ⁷Be endohedral C₆₀ (⁷Be@C₆₀) and ⁷Be in Be metal (Be metal (⁷Be)) is found to be 52.68 ± 0.05 and 53.12 ± 0.05 days, respectively. This amounts to a 0.83% difference in electroncapture decay half-life between ⁷Be@C₆₀ and Be metal (⁷Be). Our result is a reflection of the different electron wave functions for ⁷Be@C₆₀ inside C₆₀ compared to the situation when ⁷Be is in a Be metal.

DOI: 10.1103/PhysRevLett.93.112501

PACS numbers: 21.10.Tg, 23.40.Hc, 27.20.+n, 36.40.Cg

There is a longstanding interest in how nuclear decay rates, in particular β -decay rates, can be changed artificially because it leads to information about the electron wave functions of the medium surrounding the decaying nucleus and because of the (somewhat remote) possibility of changing the decay rates of radioactive waste products. As first suggested by Segré et al. [1-3], electron-capture (EC) decay rates depend on the density of atomic electrons within the nucleus. External factors such as chemical form and pressure may alter the electron overlap densities with the nucleus and thus affect the electroncapture decay rates. The nucleus ⁷Be is a good candidate to use to look for external electron density effects on decay half-lives because of its simple electronic structure, $1s^22s^2$, in the EC-decaying atom. The ⁷Be atom decays directly to the $3/2^{-1}$ ground state of ⁷Li with a branching of 89.6%, and to the first excited state in ⁷Li $(1/2^{-}$ at 478 keV) with the remaining branching of 10.4%. This excited state decays by γ emission to the ground state [4]. In recent studies, there have been several observations and/or calculations of variations in half-life with the host metals [5-10], chemical forms [11-14], and pressure [15,16]. In most of these environments, the halflife is longer than 53.10 days.

After the discovery of C₆₀ and the subsequent successful production of large amounts of fullerenes [17,18], it was found that large endohedral fullerenes, such as $M@C_{82}$ (M = metal), can be created simultaneously with ordinary fullerenes through arc-discharge vaporization of composite rods made of graphite and the metal compounds [19,20]. However, the production rate of endohedral C_{60} is quite low compared to ordinary C_{60} and even to $M@C_{82}$. An alternative way of producing endohedral C_{60} is to insert foreign atoms into the cages of the preexisting C_{60} after their formation [21–27]. We have examined the formation of endohedral fullerenes by a nuclear recoil implantation of several foreign atoms following nuclear reactions [24-27]. We found that ⁷Be can be endohedrally doped to create the ⁷Be endohedral C_{60} $(^{7}Be@C_{60})[27].$

Because of the unique chemical form of C_{60} , the electron contact density on ⁷Be nuclei is affected significantly by the electron density of C_{60} . Therefore, it is interesting to investigate the question: "how does the electroncapture decay rate in ⁷Be change inside the C_{60} cage relative to other situations?" Here, we compare the half-life of ⁷Be when it is encapsulated in C_{60} to that of ⁷Be in Be metal as a reference. To accurately calibrate our time measurements, we rely on a standard clock time radio signal. We find a surprisingly short half-life of ⁷Be in C_{60} .

To allow us to measure the EC-decay rate of ⁷Be inside C_{60} , we produce ⁷Be@C₆₀ by a nuclear recoil implantation technique (method (1)). As to a reference sample, another method (2) was employed to produce Be metal (⁷Be) samples.

(1) To produce ${}^{7}Be@C_{60}$, Li₂CO₃ was used in powder form. The grain size of the material was smaller than 100 meshes (20 μ m). Purified fullerene (C₆₀) was carefully mixed with Li_2CO_3 (weight ratio = 1:1) in an agate mortar, adding a few ml of carbon disulfide (CS_2) . After drying up, about 50 mg of the mixture sample was wrapped in a pure aluminum foil of 10 μ m in thickness for irradiation. Proton irradiation with a beam energy of 16 MeV was performed at the Cyclotron Radio-Isotope Center, Tohoku University. The beam current was typically 3 μ A and the irradiation time was about eight hours. The reaction ${}^{7}Li(p, n){}^{7}Be$ then leads to the production of ⁷Be. After the kinetic energy of ⁷Be has decreased in the sample to an appropriate value, it then penetrates into the C_{60} cage to produce the endohedral fullerene [27]. After irradiation, the sample was dissolved in CS₂ and filtered through a millipore filter (pore size = 0.2) to remove insoluble materials. The soluble portion was injected into a High Performance Liquid Chromatography (HPLC) device equipped with a 5 PPB (Cosmosil) (silica-bonded with a pentabromobenzyl group) column of 10 mm (in inner diameter) and 250 mm (in length) at a flow rate of 2 ml/min. To confirm the presence of fullerenes and their derivatives, a UV detector was installed with a wavelength of 400 nm. Eluent fractions were collected for 30 sec intervals (0-30, 30-60, 60-90,...sec). Figure 1 shows for materials inserted into C₆₀ samples, a radiochromatogram measured with a γ detector (solid circles) and a chromatogram measured with an UV detector (solid line), both plotted versus retention time after injection. A clear correlation between the UV-absorption intensity and the γ counting rate in the 8.5–10.5 min interval is seen in Fig. 1. From the correlation of the elution behavior between the UV chromatogram and the radioactivities of the ⁷Be atoms, we found that the atomdoped fullerene 7Be@C60 was indeed produced by nuclear recoil implantation. The successful insertion of Be atom into C_{60} with an *ab initio* molecular simulation was also inserted in the figure [27]. The fraction that corresponded to C_{60} was deposited on a sample holder where the CS₂ solvent was allowed to dry up so that a measurement sample was obtained.

(2) The production of Be metal (⁷Be) also involved a series of different procedures. Be metal, a hexagonal close-packed (hcp) structure, of 10 mm (in diameter) $\times 0.3$ mm (in thickness) was used to produce ⁷Be uniformly in the metal. The Be metal was sealed in a quartz tube of 12 mm in diameter which was then used as a target. The irradiation with bremsstrahlung (50 MeV electrons) was carried out at the Electron Linear Accelerator, Laboratory of Nuclear Science, Tohoku University. The sample in the quartz tube was set in the middle of a sweep magnet placed on the axis of the electron beam. A 2 mm

FIG. 1. HPLC elution curves of the soluble portion of the crude extracted in the proton irradiated sample of ⁷Li and C₆₀. The vertical axis shows the radioactivities of ⁷Be in each fraction (solid circles) and an absorbance of UV chromatogram of C₆₀. The inserted figures are time-ordered snapshots of a simulation taken from Ref. [27], where ⁷Be hits the center of a six-membered ring of C₆₀ with 5 eV kinetic energy. One can see successful production of ⁷Be@C₆₀.

thick platinum converter was set in front of the sweep magnet to generate bremsstrahlung. Then, the sample was irradiated only by the bremsstrahlung (all electrons were diverted by the magnetic field). Therefore, the damage to the Be metal lattice was minimal. The ⁷Be isotope is produced in the ⁹Be(γ , 2n)⁷Be reaction in the Be metal. After irradiation, the sample was baked in an electric oven with 1100 °C for 1 hour in an attempt to repair the lattice defects that might be induced by the (γ , 2n) reaction. Finally, the sample was washed with HCl solution to clean the surface.

The two samples of ⁷Be@C₆₀ and Be metal (⁷Be) were placed in an automated sample changer, which vertically moved the samples in front of a γ -ray detector. This allowed the decay rates of the two samples to be measured in a comparable way. The $^{7}Be@C_{60}$ sample was moved in front of the detector and its γ rays were measured for a specific time T_d , precisely $T_d = 21570$ sec. Then the samples were interchanged and the Be metal (⁷Be) sample was moved in front of the detector ($T_{\rm m} =$ 30 sec) and measured for exactly the same length of time. The $T_{\rm d} + T_{\rm m}$ is exactly 21600 sec (6 hours). This procedure was then repeated 330 times over 170 days. The internal clock time of a computer for data acquisition was always calibrated by a time-standard signal distributed via a long-wave radio center in Japan. (i.e., The starting time for each run was correlated to a time distributed publicly.) Therefore, the uncertainty in the time measurements is negligibly small. The system was completely controlled by a computer to obtain precise measurement positions. The reproducibility of each position was determined to be within 0.1 mm. Systematic errors were reduced by using the metal (^{7}Be) as a reference. We prepared the two samples so that we obtained similar and uniform concentrations of ⁷Be. Furthermore, the temperature was kept constant at 20 °C by air conditioner. The activities associated with ⁷Be, in particular, the 478 keV γ rays emanating from the EC-decay daughter of ⁷Be, were measured with a high-purity germanium (HPGe) detector ($\Delta E_{\rm FWHM}$ is 1.8 keV and 50% relative efficiency) coupled to a 2048-channel pulse-height analyzer. The excellent energy resolution of the HPGe detector resulted in a good signal-to-noise ratio. The background was reduced by a lead shield. Therefore, the background peaks do not impair the determination of the half-life of ⁷Be in the present experiment. The activities associated with the decay of ⁷Be could be uniquely detected through the identification of characteristic γ rays, and all other sources could be ruled out.

A typical γ -ray spectrum obtained in a measurement of ⁷Be@C₆₀ decay as a function in keV is shown in Fig. 2. The expected γ line at $E_{\gamma} = 478$ keV and a natural background line at $\gamma = 1461$ keV can be seen as two giant peaks. No peak was seen at around $E_{\gamma} = 478$ keV when the ⁷Be sources were absent. A direct summation

FIG. 2. Typical γ -ray spectrum of ⁷Be in the ⁷Be@C₆₀ fraction.

method, which is normally used in activation analysis, was applied to obtain the peak area ($E_{\gamma} = 478 \text{ keV}$) and the background was taken to be a straight line between the average counting number/channel on both sides of the peak. In Fig. 3, the two measured exponential decay curves for the ⁷Be@C₆₀ and Be metal (⁷Be) activities are plotted versus time. Red and blue circles, respectively,

FIG. 3 (color). Exponential decay curves of ⁷Be in samples of ⁷Be endohedral C_{60} and Be metal (⁷Be). Insets corresponding to the decay intervals of $0 \sim 20$ days and $130 \sim 160$ days are displayed with an expanded scale.

indicate the radioactivities of ⁷Be@C₆₀ and Be metal (⁷Be) samples. The initial radioactivities of the ⁷Be in each sample were almost identical, i.e., at time zero we obtained around 2.7 counts/s (cps) for ⁷Be@C₆₀ and 2.5 cps for Be metal (7 Be). So that the two decay curves can be compared, the data for Be metal (⁷Be) shown in Fig. 3 were normalized to that for ${}^{7}\text{Be}@C_{60}$ by use of an adjustment procedure on a few initial points of the decay curve. The decay constants for the two samples were obtained by fitting straight lines to the measured data points by use of a MINUIT program distributed from the CERN Program Library. This program takes into account the statistical error associated with each data point in Fig. 3. This statistical error is by far the dominating uncertainty. The uncertainty of our measurement is given by the uncertainty of the slope of the straight line fitted to the logarithm of the counts. The results for the sample ⁷Be@C₆₀ and Be metal (⁷Be) are $T_{1/2} = 52.68 \pm 0.05$, and $T_{1/2} = 53.12 \pm 0.05$ days, respectively. The dead time in the data acquisition system has been found to be about 8 or 9 sec for each 21 570 sec run. Therefore, the uncertainty due to the dead time is slightly less than 0.04%. (In order to reduce the dead time of the measurement system, the amount of the activities and the distance between a γ detector and the source were prepared suitably in the measurements.) This systematic error is about half of the statistical error quoted above.

The half-life obtained in the sample of Be metal (⁷Be) is $T_{1/2} = 53.12 \pm 0.05$ days. The half-life values obtained for ⁷Be in several other host materials such as graphite and boron nitride have been presented by Jaeger and Norman *et al.* [5,8]. The value ($T_{1/2}$) is always in the range 53.1 to 53.2 days except for the case of gold (53.31 days)[8]. In Table I, half-lives previously measured are also shown as a comparison. Here, only the half-lives obtained using a standard time distributed publicly (stated in the text) are listed[5,8]. Therefore, we find that our reference measurement of ($T_{1/2}$) of ⁷Be for Be metal (⁷Be) is in satisfactory agreement with other available data.

TABLE I. The half-life $(T_{1/2})$ of ⁷Be in the host of Be metal as determined with a least-squared fit. Half-lives previously measured in several host materials are also shown as a comparison.

Host materials	$T_{1/2}$ (days)	References
C ₆₀	52.68 ± 0.05	This work
Beryllium metal	53.12 ± 0.05	This work
Lithium fluoride	53.12 ± 0.07	[5]
Graphite	53.107 ± 0.022	[8]
Boron nitride	53.174 ± 0.037	[8]
Tantalum	53.195 ± 0.052	[8]
Gold	53.311 ± 0.042	[8]

It is surprising to observe that the half-life obtained for ⁷Be in the sample ⁷Be@C₆₀, $T_{1/2} = 52.68 \pm 0.05$ days (see Table I), is as much as 0.83% shorter than for the Be metal (⁷Be) sample, where we define the percentage difference by $[100 \times (\lambda(C_{60}) - \lambda(Be metal))]/\lambda(Be metal))$. This difference in half-lives is sufficiently large so that it is clearly visually discernible when the data are displayed on the extended scale of the right inset in Fig. 3. The halflife of ⁷Be in the C_{60} is shorter than any previously reported for any material or pressure. This implies that the ⁷Be atoms are located in a unique environment inside the C₆₀ cages. Several factors contribute to give rise to this unique environment; for example, the many π electrons of C₆₀ and the special dynamic conditions of the electrons inside the C_{60} cage, which include ratchet and/ or tumbling motion [28-30], all which affect the contact electron density at the ⁷Be nucleus. Here, a magnitude of the average charge-transfer from 2s electrons of ⁷Be atom, e.g., K and L capture [31,32], can play an important role for such a large variation in the ⁷Be decay constant between ⁷Be@C₆₀ and Be metal (⁷Be).

In summary, we have measured the half-life of 7 Be (1) encapsulated in C_{60} and (2) incorporated in Be metal using a HPGe detector with a time reference from a standard-time radio signal. We found that the half-life of ⁷Be in C₆₀ and Be metal was $T_{1/2} = 52.68 \pm 0.05$ and $T_{1/2} = 53.12 \pm 0.05$ days, respectively. This 0.83% difference between the EC rate in C_{60} and in Be metal represents a strong environment effect on the ⁷Be EC capture rate, caused by the different electronic wave functions near the ⁷Be nucleus inside a C_{60} cage and inside Be metal. Since we have found a record-large environment effect on the decay constant, it is our belief that these results will be very useful in further experimental and theoretical studies of environmental effects on radioactive decay and, for example, help identify other favorable environments for large decayconstant changes.

The authors are grateful to the staff in the division of accelerators of the Laboratory of Nuclear Science and the Cyclotron Radio-Isotope Center, Tohoku University. This work was supported by Grant-in-Aid for Co-operative Research No. 10640535 and No. 12640532 from the Ministry of Education of Japan, and by the REIMEI Research Resources of Japan Atomic Energy Research Institute. Finally, we are grateful to Dr. P. Möller (LANL) and Professor H. Nakahara for valuable discussions.

- [1] E. Segré, Phys. Rev. 71, 274 (1947).
- [2] E. Segré and C. E. Wiegand, Phys. Rev. 75, 39 (1949).
- [3] R. F. Leininger, E. Segré, and C. Wiegand, Phys. Rev. 76, 897 (1949).
- [4] Table of Isotopes, edited by C. M. Lederer and V.S. Shirley (John Wiley & Sons, Inc., New York, 1996), 8th ed., Vol. I.
- [5] M. Jaeger et al., Phys. Rev. C 54, 423 (1996).
- [6] A. Ray et al., Phys. Lett. B 455, 69 (1999).
- [7] A. Ray et al., Phys. Lett. B 531, 187 (2002).
- [8] E. B. Norman et al., Phys. Lett. B 519, 15 (2001).
- [9] Z.Y. Liu et al., Chin. Phys. Lett. 20, 829 (2003).
- [10] V. N. Kondratyev and A. Banasera, Phys. Rev. Lett. 74, 2824 (1995).
- [11] C. A. Huh, Earth Planet. Sci. Lett. 171, 325 (1999).
- [12] H.W. Johlige, D. C. Aumann, and H. J. Born, Phys. Rev. C 2, 1616 (1970).
- [13] J. A. Tossell, Earth Planet. Sci. Lett. 195, 131 (2002).
- [14] F. Lagoutine, J. Legrand, and C. Bac, Int. J. Appl. Radiat. Isot. 26, 131 (1975).
- [15] W. K. Hensley, W. A. Bassett, and J. R. Huizenga, Science 181, 1164 (1973).
- [16] L. Liu and C. A. Huh, Earth Planet. Sci. Lett. 180, 163 (2000).
- [17] H.W. Kroto et al., Nature (London) 318, 162 (1985).
- [18] W. Krätschmer et al., Nature (London) 347, 354 (1990).
- [19] Y. Chai *et al.*, J. Phys. Chem. **95**, 7564 (1991).
- [20] M. Takata et al., Nature (London) 377, 46 (1995).
- [21] M. Saunders et al., Science 271, 1693 (1996).
- [22] T. Braun and H. Rausch, Chem. Phys. Lett. 237, 443 (1995).
- [23] G. E. Gadd et al., J. Am. Chem. Soc. 120, 10322 (1998).
- [24] T. Ohtsuki et al., J. Am. Chem. Soc. 117, 12869 (1995).
- [25] T. Ohtsuki et al., Phys. Rev. Lett., 81, 967 (1998).
- [26] T. Ohtsuki et al., J. Chem. Phys. 112, 2834 (2000).
- [27] T. Ohtsuki et al., Phys. Rev. Lett. 77, 3522 (1996).
- [28] K. Kobayashi et al., Chem. Phys. Lett. 261, 502 (1996).
- [29] B.W. Smith et al., Chem. Phys. Lett. 331, 137 (2000).
- [30] W. Sato et al., Phys. Rev. Lett. 80, 133 (1998).
- [31] P. A. Voytas et al., Phys. Rev. Lett. 88, 012501 (2002).
- [32] A. Ray et al., Phys. Rev. C 66, 012501(R) (2002)