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Phase Separation in the Two-Dimensional Bosonic Hubbard Model with Ring Exchange
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We show that soft-core bosons in two dimensions with a ring exchange term exhibit a tendency for
phase separation. This observation suggests that the thermodynamic stability of normal Bose liquid
phases driven by ring exchange should be carefully examined.
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Interest in ring exchange interactions in quantum
many-body systems has a long history, both theoretically
and experimentally [1]. Recently, the ring exchange in-
teraction has been invoked in an effort to understand
various aspects of high temperature superconductivity.
While the Heisenberg model alone provides a rather
accurate picture of magnetic excitations in the parent
compounds of the cuprate superconductors [2], estimates
of the magnitude of the ring exchange term are as high as
one quarter of the exchange coupling [3—5] and it there-
fore has been of interest to understand how this term
might modify magnetic properties [3,6—9]. Ring ex-
change interactions have also been suggested as a likely
candidate to reconcile the properties of the underdoped
pseudogap regime. The basic picture is that the ring
exchange interaction can give rise to a new normal
“Bose metal” phase at zero temperature in which there
are no broken symmetries associated with superfluidity or
charge density wave phases, and in which the compressi-
bility is also finite [10].

With these motivations partly in mind, Sandvik et al
[11] studied the phase diagram of the two-dimensional
spin-1/2 XY model with spin exchange interaction on a
square lattice,

H=-J>Bij = K> Pija, (1)

(i (ijkI)
where

Bij = S S + S;ST = 2(8185 + 1S},

2
Pijig = S Sy Sy S, + 87878 S/ @

and (ij) denotes nearest neighbors and (i jk1) are sites at
the corners of a plaquette. As is well known, for K = 0
this model is exactly equivalent to the hard-core bosonic
Hubbard model, at half filling, with no interactions apart
from the constraint on-site occupations, and it has only a
superfluid phase. Sandvik et al [11] studied the phase
diagram as a function of K using the stochastic series
expansion algorithm [12]. They found that as K increases,
the superfluid density, p,, decreases up to a critical value,
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K., where a phase transition takes place, and p, goes to
zero with long range order appearing in the momentum
(77, 0) and (0, 7) channels of the plaquette-plaquette cor-
relation function. This indicates the existence of a phase
in which plaquettes with large and small values of ring
exchange alternate with a striped pattern across the lat-
tice. This phase is also an incompressible insulator. For
yet larger K, charge density wave order is established in
which the site occupations are alternatingly large and
small.

It is believed [10] that when the hard-core constraint is
relaxed, the striped plaquette phase might evolve into a
normal compressible conducting “Bose metal” in which
none of the order parameters mentioned above is nonzero.
This suggestion leads us to study here the phase diagram
of the soft-core bosonic Hubbard model at half filling
with ring exchange interaction,

H= —tZ(aiTaj + a}ai) + UZni(ni - 1)
a5 i
- K Z (a;fajalta, + aia}aka;r), 3)
(ijk1)

where the destruction and creation operators satisfy
[a;, a}] = &ij, mi = a;rai is the number operator at site i
and U is the on-site interaction strength. We choose t = 1
to set the energy scale. For our quantum Monte Carlo
(QMC) simulations we used the world line algorithm with
four-site decoupling [13]. We verified our code for K = 0
by comparing with existing results for hard- and soft-core
bosons with and without near and next near neighbor
interactions. For the K # 0 case, we compared with the
hard-core results of [11].

Before discussing results for the full many-body sys-
tem, it is interesting to study the behavior of two bosons,
since the formation of a bound state is closely related to
the issue of phase separation. Ring exchange, like an
attractive potential, favors proximity of two bosons, since
the action of such a term is nonzero only when the two
bosons live on the same plaquette. In Fig. 1 we show the
average separation (@ |r?|®d,) of two bosons, normalized
to the number of sites L? on an L X L lattice. As K
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FIG. 1. Average ground state separation (®y|r?|®,) of two
bosons, normalized to the system size, as a function of the
magnitude of the ring exchange energy scale K. Here the
hopping ¢ =1 and the soft-core repulsion U = 12. At small
K, the normalized separation is independent of lattice size,
indicating that the two bosons are spread independently
throughout the lattice. At larger K the bosons prefer smaller
separation to optimize the ring exchange energy, indicating the
formation of a bound state.

increases, there is a crossover at K = 3 from a regime
where the boson separation grows linearly with system
size, so that the normalized separation is size indepen-
dent, to one in which the boson separation does not grow
with system size.

While we do not show the associated data, plots of
(Do r?|D,) for different soft-core repulsion U reveal that
the average separation is insensitive to the value of U.
This will obviously be true in the unbound regime at
small K, since the density is so dilute. It is less clear
that this should be so in the bound regime at large K.
However, as can be seen from the data in Fig. 1, the radius
of the bound state is several lattice spacings ({(r*) « 0.1L?
whence r « 0.3L), so here too the effect of U is expected
to be relatively small.

Figure 1 suggests that there might be a tendency for
ring exchange to cause the bosons to clump together, and,
in an extreme scenario, to undergo phase separation.
However, at densities higher than the dilute two boson
case, this effect is opposed by the repulsion U. The focus
of this Letter is to examine this competition and deter-
mine the phase diagram of the soft-core case as a func-
tion of both U and K at half filling.

The most straightforward indication of phase separa-
tion comes from a real space image of the boson density
during the course of a simulation. Panels (a) and (b) of
Fig. 2 show the average density distribution [14] for L =
16, U = 4, andK = 2.5. We see indications that the bo-
sons undergo phase separation: At less than quarter filling
[panel (a)] the bosons clump together into a compact
region of high density. At densities above quarter filling,
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FIG. 2. Typical QMC results for the average density distribu-
tion in the phase separated region. Panel (a): U = 4, K = 2.5,
and p = 50/256; panel (b): U = 4, K = 2.5, and p = 128/256
(half filling); panel (¢c): U = 4, K = 10, and p = 128/256 (half
filling). At half filling, a stripe across our periodic boundary
condition lattice maximizes the number of occupied plaquettes,
and hence minimizes the ring exchange energy. As K increases,
the stripe becomes narrower, reflecting the tendency of K to
localize the bosons.

on a lattice with periodic boundary conditions, the num-
ber of occupied plaquettes is largest (and hence the ring
exchange energy is most negative) for a configuration
where the bosons stretch out in stripe across the lattice
[panel (b)]. Panel (c) shows the density distribution at
large K, beyond the quantum critical point identified in
Ref. [11].

We will now demonstrate that phase separation is char-
acteristic of a large portion of the K-U phase diagram by
examining the density-density correlation function and
its associated structure factor, fixing U (or K) and scan-
ning K (or U). As Fig. 2 illustrates, if the bosons phase
separate, they may form a structure in which a set of
contiguous sites of about half the system size will have
appreciable boson occupation. The other half of the lattice
is essentially empty. Therefore, if one examines the struc-
ture factor of the density-density correlation function,

1 .
Sk k) = 25 > Clrje X @
with
) = 7z Yot + £ ©

one should observe a peak in S at small momentum, e.g.,
(2#w/L,0), (0,27/L), or 27/L,27/L) depending on the
precise orientation of the clump [15]. By looking at the
sum of the density structure factor at these three smallest
momentum values we are sensitive to phase separation
regardless of whether it occurs in a puddle of roughly
circular shape [Fig. 2(a)] or in some more elongated
pattern [Fig. 2(b)]. Figure 3 clearly shows this behavior:
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FIG. 3. The average structure factor, [SQ2#w/L,0)+

S(0,27/L) + SQa/L,2w/L)]/3 versus K. We see a sharp in-
crease in § at K =2 for U =4 and K = 4 for U = 8. The
simulations were done for 8 = 8 and p = 0.5.

For K <2 at U =4, § is very small at the relevant
momenta. For K > 2, phase separation sets in. Data for
16 X 16 and 24 X 24 lattices are shown and their agree-
ment indicates that this phase separation is not a finite
lattice effect. The critical value of K grows roughly
linearly with U.

It is also interesting to understand the behavior of the
superfluid density p,. One does not necessarily expect p;
to vanish when phase separation occurs. In fact, as is well
known, p, # O for the soft-core boson Hubbard model at
all fillings, including commensurate density, if U is suf-
ficiently small. Similarly, here it is possible that p, can
survive in the dense region of the phase separated lattice
[16,17]. Our simulations show that when phase separation
first occurs, the populated region forms a band that spans
the whole system. The bosons may then delocalize along
that band, maintaining an (anisotropic) superfluid den-
sity. We have found that when the bosons form such a
band, the plaquette-plaquette structure factor is also an-
isotropic and has long range correlations along the direc-
tion of the band. As K is increased further, the populated
region of the lattice takes the form of an island. In such a
case, the system may not be considered a superfluid in
that one cannot establish superflow across the system.
However, the bosons may still be delocalized over the
extent of the island [18]. Figure 4 shows p, versus K [19].

By making scans like those of Fig. 3 at several values of
U, we construct the phase diagram which we show in
Fig. 5. Above the solid line, the system undergoes phase
separation.

How do these results connect with the previous studies
in the hard-core limit? There we know that a phase
transition occurs at K./J = 7.9 from a superfluid to a
striped plaquette phase [11]. We show in Fig. 6 the behav-
ior of the boson density p as a function of chemical
potential w in this hard-core limit. The jump in w across
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FIG. 4. The superfluid density as a function of K for U = 8.
p,s remains finite in the phase separated region, indicating that
the bosons are delocalized across the clump of occupied sites.
Solid circles are 16 X 16 lattices and open squares are 24 X 24
lattices. Inset: The hard-core limit for which, instead, p;, — 0
at large K.

half filling p = 0.5 shows that the plaquette ordered
phase has a gap to the addition of bosons (‘“‘charge ex-
citations”), a result which is in agreement with Sandvik
et al. [11]. Melko et al. report jumps in the magnetization
and superfluid density at large K which similarly indicate
a first order transition [20]. In Fig. 6, the slope of the p
versus u is the compressibility . Consequently, if this
curve “bends backwards,” the system is thermodynami-
cally unstable and undergoes phase separation [21,22].
While the data are not conclusive, we do see hints of an
instability. For |p — 0.5] > 0.008, the slope is finite and
corresponds to a normal superfluid. For |p — 0.5] <
0.008, the slope is either very large, or perhaps negative,
indicative of phase separation.

So far we have addressed mostly the half-filled case,
and lower densities. It is of course of interest to examine
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FIG. 5. The phase diagram of the half-filled Bose-Hubbard
model in the U-K plane. Below the solid line, the system is
superfluid while above the line it phase separates; see text.
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FIG. 6. The boson density, p, versus the chemical potential,
w, for hard-core bosons at K = 10. The jump in u at p = 1 is
associated with the nonzero gap in the phase with long range
striped plaquette order. There are indications of a region of
negative compressibility k = dp/du immediately adjacent to
the gapped phase.

higher fillings where the effect of U will be expected to
discourage phase separation. We have done simulations for
p =1 and p = 1.5 and found in both cases that despite
the higher densities, phase separation still sets in above a
critical value K > K, of the ring exchange energy scale.
This result is not so surprising since the on-site repulsion
U and the ring exchange term both scale with density as
p?. (Each of the four ring exchange creation/destruction
operators picks up a factor of = ,/n when acting on a site
with occupation n.)

In conclusion, we have shown that a sufficiently large
ring exchange energy can lead to a thermodynamic in-
stability and phase separation. We determined the critical
K as a function of the soft-core repulsion U for a half-
filled lattice and found roughly K, = U/2. We conclude
that the soft-core boson Hubbard model does not exhibit a
normal Bose metal phase, but instead undergoes phase
separation. This phase separation also takes place when
the hopping parameter vanishes, t = 0, a limit examined
for the quantum phase model in Ref. [10] but which did
not find phase separation.

110404-4

We acknowledge useful conversations with T.C.
Newman. This work was supported by NSF-CNRS coop-
erative Grant No. 12929, NSF-DMR-0312261, and NSF-
INT-0124863.

[1] D.J. Thouless, Proc. Phys. Soc. London 86, 893 (1965).

[2] E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).

[3] R. Coldea et al., Phys. Rev. Lett. 86, 5377 (2001).

[4] A.A. Katanin and A.P. Kampf, Phys. Rev. B 66,
100403(R) (2002).

[5] E. Muller-Hartmann and A. Reischl, Eur. Phys. J. B 28,
173 (2002).

[6] M. Roger and J. M. Delrieu, Phys. Rev. B 39, 2299 (1989).

[7]1 Y. Honda et al., Phys. Rev. B 47, 11329 (1993).

[8] J. Lorenzana et al., Phys. Rev. Lett. 83, 5122 (1999).

[9] M. Matsuda et al., Phys. Rev. B 62, 8903 (2000).

[10] A. Paramekanti et al, Phys. Rev. B 66, 054526 (2002).

[11] A.W. Sandvik et al, Phys. Rev. Lett. 89, 247201 (2002).

[12] A.W. Sandvik and J. Kurkijarvi, Phys. Rev. B 43, 5950
(1991).

[13] E. Loh et al, Phys. Rev. B 31, 4712 (1985).

[14] The data shown in Fig. 2 are not a snapshot of a single
configuration, but an average over a whole simulation
run. In principle for extremely long simulations, the
puddle of occupied sites will gradually move around
the whole lattice and give a uniform density, p; = % on
every site i. In practice, such motion of the large collec-
tion of bosons is extremely slow.

[15] When U is reasonably large and all sites are either empty
or singly occupied, the structure factor at S[k = (0, 0)] is
just the density.

[16] G.G. Batrouni et al., Phys. Rev. Lett. 65, 1765 (1990).

[17] M.P. A. Fisher et al., Phys. Rev. B 40, 546 (1989).

[18] There are interesting analogies between this sort of
“local” superfluidity and the behavior of bosons in a
confining potential. See, e.g., M. Greiner et al., Nature
(London) 415, 39 (2002).

[19] We measure p, through an extrapolation of the imagi-
nary time dependence of an appropriate current-current
correlation function. For details, see Ref. [16].

[20] R.G. Melko, A.W. Sandvik, and D.J. Scalapino, Phys.
Rev. B 69, 100408 (2004).

[21] G.G. Batrouni and R.T. Scalettar, Phys. Rev. Lett. 84,
1599 (2000).

[22] F Hébert et al., Phys. Rev. B 65, 014513 (2002).

110404-4



