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Bell-Klyshko Inequalities to Characterize Maximally Entangled States of n Qubits
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This Letter presents the first rigorous proof of the conjecture raised by Gisin and Bechmann-
Pasquinucci [Phys. Lett. A 246, 1 (1998)], that the Greenberger-Horne-Zeilinger states of n qubits and
the states obtained from them by local unitary transformations are the unique states that maximally
violate the Bell-Klyshko inequalities. The proof is obtained by using the certain algebraic properties
that Pauli’s matrices satisfy and some subtle mathematical techniques. Since all states obtained by local
unitary transformations of a maximally entangled state are equally valid entangled states, we thus give
a characterization of maximally entangled states of n qubits in terms of the Bell-type inequality.
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The Bell inequality [1] was originally designed to rule
out various kinds of local hidden variable theories.
Precisely, the Bell inequality indicates that certain sta-
tistical correlations predicted by quantum mechanics for
measurements on two-qubit ensembles cannot be under-
stood within a realistic picture based on Einstein,
Podolsky, and Rosen’s (EPR’s) notion of local realism
[2]. However, this inequality also provides a test to dis-
tinguish entangled from nonentangled quantum states of
n qubits [3–5]. Moreover, in this Letter we will show that
the Bell inequality presents a characterization of maxi-
mally entangled states of n qubits.

As is well known, maximally entangled states, such as
Bell states and Greenberger-Horne-Zeilinger (GHZ)
states [6], have become a key concept in the nowadays
quantum mechanics. On the other hand, from a practical
point of view, maximally entangled states have found
numerous applications in quantum information [7]. A
natural question is then how to characterize maximally
entangled states. There are extensive earlier works on
maximally entangled states [8], however, this problem
is far from being completely understood today.

It is well known that the Bell-Clauser-Horne-Shimony-
Holt (Bell-CHSH) inequality [9] nicely characterizes the
two-qubit Bell states. For the case of n qubits, it is argued
that maximally entangled states should maximally vio-
late the Bell inequality [10]. Therefore, for characterizing
maximally entangled states of n qubits, it is suitable to
study the states that maximally violate the Bell inequal-
ity. This criterion is not precise, because there are infi-
nitely many versions of the Bell inequality [11]. A natural
generalization of the Bell-CHSH inequality for n qubits,
called Bell-Klyshko inequalities, was presented by
Klyshko and Belinskii [12] and Gisin and Bechmann-
Pasquinucci [10]. The Bell-Klyshko inequality of n qubits
is maximally violated by the GHZ states. Also, all states
obtained by local unitary transformations of them maxi-
mally violate the Bell-Klyshko inequality and are
equally valid entangled states [13]. This leads Gisin and
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Bechmann-Pasquinucci [10] to conjecture that the con-
verse holds true, i.e., all states of n qubits maximally
violating the Bell-Klyshko inequality are exactly the
GHZ states and the states obtained from them by local
unitary transformations, and consequently the Bell-
Klyshko inequality characterizes the maximally en-
tangled states of n qubits.

In this Letter, we answer affirmatively Gisin and
Bechmann-Pasquinucci’s conjecture. The techniques in-
volved here are based on the determination of local spin
observables of the associated Bell operator, which was
recently introduced by the author [14]. We show that a
Bell operator presents a maximal violation on a state if
and only if the associated local spin observables satisfy
the certain algebraic identities that Pauli’s matrices sat-
isfy. By using some subtle mathematical techniques, we
can find those states that show maximal violation, which
are exactly the states obtained from the GHZ states by
local unitary transformations.

Let us give a brief review of the Bell-Klyshko inequal-
ity. The Bell-Klyshko inequality of n qubits is defined
recursively (n � 2). Let Aj; A0

j denote spin observables on
the jth qubit, j � 1; . . . ; n. Denote by B1 � A1 and B0

1 �
A0
1. Define

B n � Bn�1 �
1

2
�An � A0

n� �B0
n�1 �

1

2
�An � A0

n�; (1)

B 0
n � B0

n�1 �
1

2
�An � A0

n� �Bn�1 �
1

2
�An � A0

n�: (2)

Clearly, B0
n denotes the same expression Bn but with all

the Aj and A0
j exchanged.We call Bn the Bell operator of n

qubits [10]. Assuming ‘‘local realism’’ [2], one concludes
the Bell-Klyshko inequality of n qubits as follows [10],

hBni � 1: (3)

Note that the right-hand side of Eq. (3) is one but not two
as in [10]; because of that, we define the Bell operator Bn
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recursively on the first-qubit spin observables, not from
the usual two-qubit Bell operator. Indeed, the two-qubit
Bell operator involved here is that

B 2 �
1

2
�A1 � A2 � A1 � A

0
2 � A0

1 � A2 � A0
1 � A

0
2�:

As shown in [10] (see below also), for n � 2;

kBnk � 2�n�1�=2: (4)

The main result we shall prove is that
Theorem: A state j’i of n qubits maximally violates

Eq.(3), that is,

h’jBnj’i � 2�n�1�=2; (5)

if and only if it can be obtained by a local unitary
transformation of the GHZ state
jGHZi � 1��

2
p �j0 � � � 0i � j1 � � � 1i�, i.e.,

j’i � U1 � � � � �UnjGHZi (6)

for some n unitary operators U1; :::; Un on C2.
Let us fix some notation. For A�0�

j � ~a�0�j � ~�j �1 � j �
n�, we write

�Aj; A0
j� � � ~aj; ~a0j�; Aj � A0

j � � ~aj � ~a0j� � ~�j:

Here, ~�j is the Pauli matrices for the jth qubit; the norms

of real vectors ~a�0�j in R3 are equal to 1. It is easy to check
that

AjA
0
j � �Aj; A

0
j� � iAj � A0

j; (7)

A0
jAj � �Aj; A0

j� � iAj � A0
j; (8)

kAj � A0
jk

2 � 1� �Aj; A0
j�
2: (9)

The sufficiency of Theorem is clear. Indeed, as noted in
[10], the GHZ state jGHZi satisfies Eq. (5) with Aj �
~aj � ~�j for ~aj regularly distributed in the x� y plane with
angles �j� 1���1�n�1��=2n� with respect to the x axis
and ~a0j ? ~aj. For generic states j’i of the form Eq. (6),
they maximally violate the Bell-Klyshko inequality of n
qubits with U�

jAjUj and U�
jA

0
jUj, where Aj and A0

j are
associated with jGHZi as above.

It remains to prove the necessity. The proof will be
done by induction based on the two-qubit case, which was
proved by the author [14]. Here, we outline the proof of
the two-qubit case. By Eqs. (7) and (8), one has that

B 2
2 � 1� �A1 � A0

1� � �A2 � A0
2�; (10)

and so by Eq. (9), B2
2 � 2 and kB2

2k � 2 if and only if

�A1; A
0
1� � �A2; A

0
2� � 0: (11)

In particular, if a two-qubit state j i satisfies

h jB2j i �
���
2

p
; (12)
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then Eq. (11) holds true and so fAj; A
0
j; A

00
j g satisfies the

algebraic identities that Pauli’s matrices satisfy [15], i.e.,

AjA0
j � �A0

jAj � iA00
j ; (13)

A0
jA

00
j � �A00

j A
0
j � iAj; (14)

A00
j Aj � �AjA00

j � iA0
j; (15)

A2
j � �A0

j�
2 � �A00

j �
2 � 1; (16)

where A00
j � Aj � A0

j (j � 1; 2). Therefore, by choosing
A00
j -representation fj0ij; j1ijg; i.e.,

A00
j j0ij � j0ij; A00

j j1ij � �j1ij; (17)

we have that

Ajj0ij � e�i�j j1ij; Ajj1ij � ei�j j0ij; (18)

A0
jj0ij � ie�i�j j1ij; A0

jj1ij � �iei�j j0ij; (19)

for some 0 � �j � 2�; j � 1; 2.
We write j00i12, etc., as shorthand for j0i1 � j0i2. Then,

j i � �00j00i12 � �01j01i12 � �10j10i12 � �11j11i12,
where j�00j2 � j�01j2 � j�10j2 � j�11j

2 � 1. By using
Eqs. (18) and (19) we conclude from Eq. (12) that j i �
1��
2

p �ei�j00i12 � ei�j11i12� for some 0 � �; � � 2�. This

immediately concludes that j i � �U1 �U2�
1��
2

p �

�j00i � j11i� for unitary operators

U1 � V1

�
ei� 0
0 1

�
; U2 � V2

�
1 0
0 ei�

�
; (20)

where Vj is the unitary transform from the original �jz
representation to A00

j representation on the jth qubit, i.e.,
Vjj0i � j0ij and Vjj1i � j1ij for j � 1; 2.

As follows, we write A1An, etc., as shorthand for A1 �
I � � � �I � An, B2

n�1 � B2
n�1 � I, and B2

jA
00
j�1A

00
n � B2

j �

A00
j�1 � I � � � �I � A00

n, where A00
j � Aj � A0

j �1 � j � n�,
and I is the identity on a qubit. The proof of Theorem for
necessity consists of the following five steps:

Proof: (i) At first, we show that

B 2
n � �B0

n�
2: (21)

To this end, by using Eqs. (7) and (8) we conclude from
Eqs. (1) and (2) that

B2
n � 1

2 �1� �An; A
0
n��B

2
n�1

� 1
2 �1� �An; A0

n���B
0
n�1�

2

��Bn�1;B0
n�1� � �12 iA

00
n�;

and

�B0
n�

2 � 1
2 �1� �An; A0

n���B
0
n�1�

2

� 1
2 �1� �An; A

0
n��B

2
n�1

��Bn�1;B0
n�1� � �12 iA

00
n�;
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respectively. Since B2
1 � A2

1 � I � �A0
1�

2 � �B0
1�

2, by in-
duction, we conclude that

B 2
n � �B0

n�
2 � B2

n�1 � �Bn�1;B0
n�1� �

�
1

2
iA00

n

�
: (22)

(ii) Second, we prove that for n � 3;

B 2
n � B2

n�1 � A00
1A

00
n �

Xn�2

j�1

B2
jA

00
j�1A

00
n: (23)

We need compute �Bn;B0
n�: From Eqs. (1) and (2) it

concludes that

BnB
0
n � iB2

n�1 � A
00
n �

1
2 �1� �An; A

0
n��Bn�1B

0
n�1

� 1
2 �1� �An; A0

n��B
0
n�1Bn�1;

and

B0
nBn � �iB2

n�1 � A
00
n �

1
2 �1� �An; A0

n��B
0
n�1Bn�1

� 1
2 �1� �An; A

0
n��Bn�1B

0
n�1;

respectively. Thus, we have that

�Bn;B
0
n� � 2iB2

n�1 � A
00
n � �Bn�1;B

0
n�1� � I

and recursively,

�Bn;B0
n� � 2i

�
A00
1 �

Xn�1

j�1

B2
jA

00
j�1

�
: (24)

Hence, by Eqs. (22) and (24) we obtain Eq. (23).
(iii) In the third step, we prove that kB2

nk � 2n�1 and
for n � 2, the equality holds if and only if

�Aj; A0
j� � 0 (25)

for all j � 1; . . . ; n.
By induction, assuming kB2

jk � 2j�1 for 2 � j � n�
1, we conclude from Eq. (23) that

kB 2
nk � kB2

n�1k � 1�
Xn�2

j�1

kB2
jk � 1�

Xn�1

j�1

2j�1

� 2n�1;

noting that kB2
2k � 2 has been shown above.

We have known that kB2
2k � 2 if and only if �A1; A0

1� �
�A2; A

0
2� � 0. If kB2

nk � 2n�1, by Eq. (23) we follow that
both kB2

n�1k � 2n�2 and kA00
nk � 1. By the inductive

assumption, we conclude that �Aj; A0
j� � 0 for all j �

1; . . . ; n� 1. Also, by Eq. (9) we have that �An; A0
n� � 0.

Conversely, assuming Eq. (25), we have that all
fAj; A

0
j; A

00
j g (1 � j � n) satisfy Eqs. (13)–(16). We choose

A00
j -representation fj0ij; j1ijg on the jth qubit (e.g.,

Eq. (17)) and write j0 � � � 0in, etc., as shorthand for j0i1 �
� � � � j0in. By induction, we follow from Eq. (23) that
B2
nj0 � � � 0in � 2n�1j0 � � � 0in and hence kB2

nk � 2n�1.
(iv) In the fourth step, we prove that for n � 2; a state

j’i of n qubits satisfying
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B 2
nj’i � 2n�1j’i (26)

must be of the form

j’i � aj0 � � � 0in � bj1 � � � 1in; (27)

where jaj2 � jbj2 � 1.
By step (iii), fj�1 � � � �nin:�1; :::; �n � 0; 1g is a or-

thogonal basis of the n-qubit system. Hence, we can
uniquely write j’i �

P
�1;:::;�n�0;1��1����n j�1 � � � �nin,

where
P

j��1����n j
2 � 1. By using Eq. (23), it concludes

from Eq. (26) that

B 2
n�1 � Ij’i � 2n�2j’i; (28)

A00
1A

00
nj’i � j’i: (29)

Since j’i � �j’1in�1 � j0in � �j’2in�1 � j1in, where
j’1in�1 and j’2in�1 are both states on the first n� 1

qubits and � �

�P
�1;:::;�n�1�0;1j��1����n�10j

2

�
1=2
; � ��P

�1;:::;�n�1�0;1j��1����n�11j
2

�
1=2

, it concludes from Eq. (28)

that B2
n�1j’jin�1 � 2n�2j’jin�1 for j � 1; 2. By the in-

ductive assumption one has that j’jin�1 � ajj0 � � �
0in�1 � bjj1 � � � 1in�1 with jajj2 � jbjj2 � 1 for j �
1; 2. Hence j’i � �1j0 � � � 0in � �2j0 � � � 01in � �3j1 �
� � 10in � �4j1 � � � 1in, where �1 � �a1; �2 � �a2; �3 �
�b1, and �4 � �b2. However, it concludes from Eq. (29)
that �2 � �3 � 0. Therefore, j’i is of the form Eq. (27).

(v) Finally, we prove that if a state j’i of n qubits with
n � 2 satisfies Eq. (5), then

j’i �
1���
2

p �ei�j0 � � � 0in � ei�j1 � � � 1in�; (30)

for some 0 � �; � � 2�.
By Eq. (4), one concludes that Eq. (5) is equivalent to

that Bnj’i � 2�n�1�=2j’i. In this case, j’i satisfies
Eq. (26) and hence is of the form Eq. (27). Then, by
Eq. (1) one has that

Bnj’i �
1

2
ae�i�n��1� i�Bn�1 � �1� i�B0

n�1�

�j0 � � � 0in�1j1in �
1

2
bei�n��1� i�Bn�1

��1� i�B0
n�1�j1 � � � 1in�1j0in;

where �n appears in Eqs. (18) and (19) for the nth qubit.
Consequently,

1
2 be

i�n��1� i�Bn�1 � �1� i�B0
n�1�j1 � � � 1in�1

� 2�n�1�=2aj0 � � � 0in�1;
(31)

and

1
2ae

�i�n��1� i�Bn�1 � �1� i�B0
n�1�j0 � � � 0in�1

� 2�n�1�=2bj1 � � � 1in�1:
(32)
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By Eq. (31) we have that

2�n�1�=2jaj �
1

2
jbj�j1� ijkBn�1k � j1� ijkB0

n�1k�

� jbj�
���
2

p
� 2�n�2�=2 �

���
2

p
� 2�n�2�=2

� jbj2�n�1�=2;

since kBn�1k; kB
0
n�1k � 2�n�2�=2 by step (iii). This con-

cludes that jaj � jbj. Similarly, by Eq. (32) we have that
jbj � jaj and so jaj � jbj. Therefore, we have that a �
1��
2

p ei�; b � 1��
2

p ei� for some 0 � �; � � 2�.

Now, denote by Vj the unitary transform from the
original �jz representation to A00

j representation on the
jth qubit, i.e., Vjj0i � j0ij and Vjj1i � j1ij, and define

U1 � V1

�
ei� 0
0 1

�
; U2 � V2

�
1 0
0 ei�

�
;

and Uj � Vj for 3 � j � n. Then Uj are all unitary
operators on C2 so that Eq. (6) holds true and the proof
is complete.

In conclusion, the maximal violation of the Bell-
Klyshko inequality of n qubits only occurs for the states
obtained from the GHZ states by local unitary trans-
formations, as conjectured by Gisin and Bechmann-
Pasquinucci [10]. However, it is proved by Werner and
Wolf [16] that the orbit corresponding to the Bell-
Klyshko inequality is the only one for which the overall
maximal violation of all-multipartite Bell-correlation
inequalities for two dichotomic observables per site is
attained. Hence, the overall maximal quantum violation
of all Bell-correlation inequalities for n qubits also oc-
curs only for the GHZ states and the states obtained from
them by local unitary transformations. Note that the GHZ
state leads to a conflict with EPR’s local realism for
nonstatistical predictions of quantum mechanics [6].
This concludes that the overall maximal violation of all
Bell-correlation inequalities of n qubits implies 100%
violation between quantum mechanics and EPR’s local
realism on n qubits (except for the two-qubit case [17]),
although the Bell inequalities indicate that EPR’s local
realism is only in conflict with the statistical prediction of
quantum mechanics. Therefore, from the view of EPR’s
local realism, the maximally entangled states of n qubits
should be just GHZ states and the states obtained from
them by local unitary transformations. Our result sheds
some new light on the close relationship among the
maximal violation of the Bell-type inequalities, 100%
violation between quantum mechanics and EPR’s local
realism, and maximally entangled states of multipartite
systems. It turns out that the Bell-type inequalities can be
110403-4
used to reveal what the term maximally entangled states
should actually mean in the multipartite systems. We may
expect such a result to hold for higher dimensional quan-
tum systems beyond qubits.

Note added.—After the acceptance of the present work,
I became aware that the result presented here can be
obtained by using the (different) method involved in
[18]. However, the authors do not state it as a single
statement nor discuss the significance of the result asso-
ciated with maximally entangled states.
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