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Within the classical Maxwell-Chern-Simons limit of the standard-model extension, the emission of
light by uniformly moving charges is studied confirming the possibility of a Čerenkov-type effect. In
this context, the exact radiation rate for charged magnetic point dipoles is determined and found in
agreement with a phase-space estimate under certain assumptions.
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The Čerenkov effect —emission of radiation from
charges moving at or above the phase speed of light —
is experimentally and theoretically well established in
conventional macroscopic media [1], and its importance
for modern particle detectors in high-energy and cosmic-
ray physics can hardly be overstated. The reasons behind
the recent revival of interest in this subject are twofold.

First, conventional-physics investigations, such as ob-
servations at CERN involving lead ions [2] and experi-
ments in exotic condensed-matter systems [3], have found
unexpected features of the Čerenkov effect. They include
nonstandard kinematical radiation conditions, backward
photon emission, and backward-pointing Čerenkov cones.
Some of these issues have been studied theoretically [4].

Second, many candidate models underlying established
physics predict Lorentz-breaking vacua [5], in which
modified light speeds, for instance, offer the possibility
of Lorentz tests via a Čerenkov-type mechanism called
‘‘vacuum Čerenkov radiation.’’ At presently attainable
energies, this and other Lorentz-breaking effects are de-
scribed by the standard-model extension (SME) [6].
Candidate underlying models include strings [7], space-
time foam [8], noncommutative geometry [9], varying
scalars [10], random-dynamics models [11], multiverses
[12], and brane worlds [13]. Numerous analyses of
Lorentz breaking in mesons, baryons, electrons, photons,
muons, neutrinos, and the Higgs sector have been per-
formed within the SME [5]. Although of substantial
importance for Lorentz-violation studies [13,14], a de-
tailed investigation of vacuum Čerenkov radiation is cur-
rently still lacking.

The present work is primarily intended to fill this
gap. However, we expect our analysis to remain appli-
cable also for conventional macroscopic media. In par-
ticular, our study provides a new conceptual perspective
on Čerenkov radiation augmenting the usual physics pic-
ture: our fully relativistic Lagrangian allows us to work in
the charge’s rest frame, where fields typically behave like
r�1 exp��

�����������
p � p

p
r� at large distances r from the source.

Here, p� satisfies the plane-wave dispersion relation, and
the metric has signature �2. Conventional massive fields
p � p � m2 lead to the Yukawa potential r�1 exp��mr�,
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and the massless limit gives the standard r�1 behavior. In
these cases, the energy-momentum tensor vanishes rap-
idly for r ! 1 precluding energy-momentum flux to
infinity. However, Lorentz-violating vacua and macro-
scopic media permit p � p < 0 resulting in oscillatory
far fields and thus the possibility of radiation. We show
that this idea leads to the standard radiation conditions
and facilitates the determination of the exact emission
rate for charged magnetic dipoles within our dispersive
and anisotropic model. To our knowledge, this is in many
respects the first such result.

The present analysis employs the classical Maxwell-
Chern-Simons limit of the SME given by the Lagrangian

LMCS � �1
4F��F�� 	 k�A�

~F�� � A�j�: (1)

Here, F�� � @�A� � @�A� denotes the conventional
electromagnetic field-strength tensor and ~F�� �
1
2"

����F�� its dual, as usual. We have included an exter-
nal source j� � �%; ~j� and adopted natural units c �

�h � 1. The spacetime-constant nondynamical k� �

�k0; ~k� violates Lorentz, PT, and CPT invariance [6,15].
Although tightly constrained observationally [16], this
model has been studied extensively in the literature
[6,16,17].

The potential A� obeys the equation of motion

����� � @�@� � 2"����k�@��A� � j�: (2)

Paralleling the conventional case, current conservation
@�j� � 0 is required for consistency. Equation (2) gives
the following modified Coulomb and Ampère laws:

~r � ~E� 2 ~k � ~B � %;

�
_~E	 ~r� ~B� 2k0 ~B	 2 ~k� ~E � ~j:

(3)

The field-potential relationship is unaltered, so that the
homogeneous Maxwell equations remain unchanged.
Gauge invariance of physics is evident from Eqs. (3),
and any of the usual conditions on A�, like Lorentz or
Coulomb gauge, can be imposed [6]. Equation (2) implies
that for j� � 0 the energy-momentum tensor
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��� � �F��F�
� 	 1

4�
��F��F�� � k� ~F��A� (4)

is, in general, not conserved, as expected:

@��
�� � j�F

��: (5)

Although ��� depends on A�, the physical 4-momentum
remains gauge invariant [16].

Up to homogeneous solutions, Eq. (2) is solved by

A��x� �
Z
C!

d4p

�2!�4
G��ĵ� exp��ip � x�; (6)

where

G�� � �
p2��� 	 2i"����k�p� 	 4k�k�

p4 	 4p2k2 � 4�p � k�2
: (7)

Here, x� � �t; ~r� is the spacetime-position vector and
p� � �!; ~p� the Fourier-space wave vector. A caret de-
notes the four-dimensional Fourier transform. The poles
of the integrand in Eq. (6) give the dispersion relation

p4 	 4p2k2 � 4�p � k�2 � 0: (8)

To ensure causal propagation, the !-integration contour
C! must pass above all poles on the real-! axis, as usual.
This is best implemented by replacing ! ! !	 i" in
each ! in the denominator of the integrand in Eq. (6). The
infinitesimal positive parameter " is taken to approach
zero after the integration. Note, however, that for time-
like k�, poles on the imaginary-! axis occur, so that
causality is violated [16,17]. In what follows, we therefore
focus on the spacelike- and lightlike-k� cases.

The current distribution describing the particle should
be time independent in the particle’s rest frame, so that
ĵ��p�� � 2!%�!�~j�� ~p�, where the tilde denotes the
three-dimensional Fourier transform. Then, Eq. (6) takes
the form

A��~r� �
Z d3 ~p

�2!�3
N��� ~p�~j�� ~p� exp�i ~p � ~r�

~p4 � 4 ~p2k2 � 4� ~p � ~k� i"k0�2
; (9)

where N��� ~p� � ~p2��� � 2i"���sk�ps � 4k�k�, and
Latin indices run from 1 to 3. Evaluation of the j ~pj-type
integral with complex-analysis methods gives certain
residues of the integrand in the complex j ~pj plane, which
typically contain the factor exp�i ~p0 � ~r�. Here, ~p0 denotes
the location of a pole. The remaining angular integrations
correspond to averaging the residues over all directions,
so that the qualitative behavior of the integral (9) is
determined by the residues. In particular, A� decreases
exponentially with increasing r for Im� ~p0� � ~0, while
Re� ~p0� � ~0 leads to oscillations with distance. As men-
tioned earlier, energy transport to spatial infinity requires
nondecaying oscillatory fields. Thus, one expects vacuum
Čerenkov radiation only when there are real p� � �0; ~p�
satisfying the plane-wave dispersion relation in the sour-
ce’s rest frame. In a general inertial frame, this condition
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reads p0� � � ~� � ~p0; ~p0�, where ~� denotes the velocity of
the particle. This is seen to be equivalent to the conven-
tional phase speed condition c0ph � j!0j=j ~p0j � j ~�j. Note
that spacelike plane-wave vectors are not necessarily
associated with positivity and stability problems [10].

The usual method for calculating the radiation rate —
extraction of the r�2 piece of the modified Poynting
vector and integration over a spherical surface —is chal-
lenging because the determination of the far fields is
hampered by the complexity of the integral (9). For
further progress, an ansatz for the current j� � J� de-
scribing the particle is advantageous. The most general
form of J��x� consistent with current conservation and
the presumed time independence in the particle’s rest
frame is

J��~r� � ���~r�; ~r� ~f�~r��; (10)

where �� ~r� is the source’s charge density and f� ~r� is an
arbitrary vector field. Moreover, we require both ��~r� and
f� ~r� to vanish rapidly outside the finite volume V0 asso-
ciated with the particle. We can therefore drop various
boundary terms in the subsequent manipulations, if the
integration volume V is chosen large enough.

Spatial integration of Eq. (5) yields

Z
�
d�l�l� �

Z
V
d3 ~rJ�F�� �

@
@t

Z
V
d3 ~r�0�; (11)

where � is the boundary of V, and d�l the corresponding
surface element with outward orientation. The energy-
momentum flux _P� �

R
� d�

l�l� through the surface �
is therefore caused by the source J��x� in the enclosed
volume V and the decrease in the field’s 4-momentum in
V, as usual. Using the Maxwell equation ~r� ~E � 0 and
the zeroth component of Eq. (11) one obtains the follow-
ing expression for the radiated energy:

Z
�
d ~� � ~S � �

Z
�
d ~� � � ~f� ~E�; (12)

where a modified Poynting vector �l0 � Sl � �Sl has
been defined. Since ~f goes to zero on the boundary of a
large volume, the energy flux to infinity vanishes. This
feature is model independent: in the particle’s rest frame,
J� is spatially localized, and time-translation invariance
holds. The resulting energy conservation implies zero
energy flux through any closed surface. Thus, the net
radiated energy vanishes in the rest frame of a localized
static source. Note that any nonzero 4-momentum radi-
ated by such a source is therefore necessarily spacelike.

The 3-momentum-emission rate is obtained similarly:

_~P �
Z
V
d3 ~rJ� ~rA�: (13)

Employing Eq. (9) and the Fourier expansion of J� yields
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_~P � i
Z d3 ~p

�2!�3
~J��� ~p�N��� ~p�~J

�� ~p�

~p4 � 4 ~p2k2 � 4� ~p � ~k� i"k0�2
~p (14)

in the limit V ! 1. Note that the integrand is odd in ~p, so

that _~P vanishes if singularities are absent. However, this
symmetry argument fails for integrands with poles at real
~p � ~p0, consistent with our radiation condition. The dis-
persion relation (8) indeed admits such solutions opening
a doorway for nonzero 3-momentum emission.

We now focus on the current distribution � � q%�~r�
and ~J � � ~�� ~r%�~r�, which describes a pointlike charge
q with magnetic dipole moment ~�. The use of a suitable
regulation of the delta function then permits a closed-
form evaluation of the integral in Eq. (14). This gives the
exact rest-frame rate of 3-momentum radiation for a
charged magnetic point dipole:

_~P � �
sgn�k0�
12!

k50
j ~kj5

f�3q2 ~k2=k20 	 6q ~k � ~�� ~�2k20

	5� ~k � ~��2k20= ~k
2
	 10� ~k� ~��2�k0 ~k

�2�q ~k2=k20 	 ~k � ~��k30 ~�g: (15)

A nonzero flux in the above static case might appear
counterintuitive. However, similar situations arise in con-
ventional physics as well. For instance, constant nonpar-
allel ~E and ~B fields are associated with a finite Poynting
flux ~S � ~E� ~B. Although suppressed by four powers of
k�, the rate (15) remains nonvanishing in the zero-charge
limit q ! 0. Ordinary refractive indices typically require
a minimal speed of the charge for the emission of
Čerenkov light. This no longer holds true in the present
context, as can be seen in the case for lightlike k� and
~� � ~0. Thus, vacuum Čerenkov radiation need not nec-

essarily be a threshold effect.
The radiation rate in the laboratory frame is often more

useful. To avoid unwieldy expressions, we consider the
special case of vanishing ~� and spacelike k�. We further
choose the laboratory such that k00 � 0 and ~k0 � ~0. Then,
suppressing the primes, Eq. (15) becomes

_P� �
q2

4!
.3� ~� � ~k�4

~k2 	 .2� ~� � ~k�2
K�; (16)

where

K� �
sgn� ~� � ~k���������������������������������

~k2 	 .2� ~� � ~k�2
q

�
.2� ~� � ~k�

~k	 .2� ~� � ~k� ~�

�
: (17)

Here, ~� is the 3-velocity of the charge in the laboratory
and . � �1� ~�2��1=2. The overdot now denotes differ-
entiation with respect to laboratory time. For particle 3-
velocities perpendicular to ~k, radiation is absent. In all

other cases, both _P0 and the projection of _~P onto ~� are
positive, so that conventional charges are decelerated
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in our laboratory frame. Note, however, that as a con-
sequence of the anisotropic vacuum, the net emitted
3-momentum is typically not aligned with the charge’s
velocity. The backreaction of the radiation on the charge
will then in general lead to a curved trajectory for the
particle. Regardless of anisotropies, 4-momentum loss
implies nongeodesic motion. Vacuum Čerenkov radiation
is therefore always associated with equivalence-principle
violations.

Most cosmic-ray analyses of Lorentz violation are
based on purely kinematical models, so that it is interest-
ing to study, whether a modified dispersion relation by
itself permits a sensible estimate for the Čerenkov rate. In
quantum theory, the Čerenkov effect corresponds to the
decay of a charge Pa into itself Pb and a photon Pc. In the
center-of-mass frame, the rate for this process obeys

d��
jMa!b;cj

2

2m
�2!�4%�4��p�

a �p�
b �p�

c �d�bd�c; (18)

where the transition amplitude Ma!b;c contains infor-
mation about the dynamics of the decay. The remaining
factors describe the kinematics of the process. They in-
clude phase-space elements d�s and various 4-momenta
p�
s � �Es; ~ps�, where s 2 fa; b; cg refers to the corre-

sponding particle. In what follows, we consider a conven-
tional charge q with p2

a � p2
b � m2. To facilitate a

transparent comparison with the classical result (15),
we further assume photon 4-momenta p�

c obeying the
dispersion relation (8), select a lightlike k� parameter,
and take the static-source limit m ! 1.

An order-of-magnitude estimate for the transition am-
plitude is jMa!b;cj

2 � q2m2 [18], where the spinor nor-
malization implicit in Eq. (18) has been used. The phase-
space element d�b is determined by the conventional
relation 2Eb� ~p�d�b � �2!��3d3 ~p. The construction of
the invariant phase-space element d�c for the photon
requires more care due to the presence of Lorentz break-
ing. Coordinate independence requires

d�c �
d3 ~pc

�2!�32j ~pc 	 sgn�k0� ~kj
(19)

for the positive-energy, spacelike roots of the dispersion
relation (8). Noting that d _P� � p�d�, our above consid-
erations lead to

_~P��
q2

8!
k0 ~k (20)

as a rough estimate for the net radiated momentum per
time in the charge’s rest frame. Comparison with Eq. (15)
supports the validity of our phase-space result (20). We
conclude that in the context of vacuum Čerenkov radia-
tion phase-space considerations can provide useful esti-
mates for momentum-emission rates.

Experimental studies employing the Čerenkov effect
in the Maxwell-Chern-Simons model are unlikely to
improve the existing tight bound of O�k�� & 10�42 GeV
110402-3
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[16]. However, Eq. (16) identifies an average alignment
of charged-matter velocities in the plane perpendicular to
~k as a potential signature in a cosmological context.
This effect might have been enhanced before electro-
weak symmetry breaking: First, radiation is not yet
decoupled from the matter resulting in a large number
of free charges that can be affected. Second, lightlike
4-momenta of massless charged matter imply that all
wave frequencies can contribute to vacuum Čerenkov
radiation [19]. We also note that our general philosophy
and methods are applicable in other Lorentz-violating
situations. For instance, some components of the dimen-
sionless �kF����� parameter in the SME are currently
bounded only at the 10�9 level [21]. Moreover, the rate
might be less suppressed in this case offering the possi-
bility of improved constraints via vacuum Čerenkov
radiation.

In conclusion, a generic conceptual picture of the
Čerenkov effect, which complements the conventional
one, has been developed and illustrated explicitly in the
Maxwell-Chern-Simons model. This physical picture
offers an interesting avenue for further insight into vari-
ous aspects of Čerenkov radiation in general Lorentz-
breaking vacua and macroscopic media. It paves the
way for additional studies in a quantum context and pro-
vides a solid foundation for phenomenological explora-
tions of Lorentz violation via the vacuum Čerenkov effect.
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