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Capillary Freezing or Complete Wetting of Hard Spheres in a Planar Hard Slit?
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Extensive simulations of a hard sphere fluid confined between two planar hard walls show the onset of
crystalline layers at the walls at about 98.3% of bulk crystallization density �f independent of the wall
separations Lz , and is, hence, a single wall phenomenon. As the bulk density far from the wall �b
increases, the thickness of the crystalline film appears to increase logarithmically, with ��f � �b�
indicating complete wetting by the hard sphere crystal of the wall-fluid interface. Increasing �b further,
we observe a jump in the adsorption which depends on Lz and corresponds to capillary freezing. The
formation of crystalline layers below bulk crystallization, the logarithmic growth of the crystalline
film, its independence of Lz , and its clear distinction from capillary freezing lend strong evidence for
complete wetting by the hard sphere crystal at the wall-fluid interface.

DOI: 10.1103/PhysRevLett.93.108303 PACS numbers: 82.70.Dd, 64.60.Cn, 64.70.–p, 68.08.Bc
The theory of simple fluids is often based on the hard-
sphere system, which serves as a standard reference sys-
tem for determining the structure and phase behavior of
more complicated fluids. The hard-sphere system has been
studied in great detail and its bulk phase behavior is now
well understood. In particular, it was shown by computer
simulations that a system of pure hard spheres shows a
purely entropy-driven transition from a disordered fluid
phase to a face-centered-cubic (fcc) crystal phase [1] at
sufficiently high density. The state of affairs for the
interfacial behavior of hard spheres near a planar hard
wall is less clear cut. Such a system plays a similar
(reference) role for simple fluids, colloids, or colloid-
polymer mixtures in contact with substrates. The behav-
ior of fluids in contact with substrates plays an important
role in areas of wetting, adhesion, and heterogeneous
nucleation. A contentious issue, which has received
much attention, is whether or not there is complete wet-
ting by the hard-sphere crystal at a smooth hard wall. The
main reason for this interest resides in the fact that any
complete wetting is driven by entropy alone. The discus-
sion was instigated in 1992 by Courtemanche and Van
Swol, whose molecular-dynamics simulations of hard
spheres confined between two hard walls showed sponta-
neous formation of crystalline layers near the wall [2] at a
normal pressure below the saturated bulk freezing pres-
sure. The authors concluded that there is complete wetting
by the hard-sphere crystal, also called prefreezing, at the
wall-fluid interface. However, these findings are disputed
by others as the presence of crystalline layers can be due
to metastability, equilibration problems (density profiles
are very asymmetric and vacancies are found in the
wetting crystal) [2], finite size effects [3], or capillary
freezing [4]. Indeed simulations with fixed normal pres-
sure show that the onset of the formation of crystalline
layers at the wall shifts to higher bulk densities and
approaches the value at which bulk crystallization occurs
upon increasing the plate separation [3]. On the other
hand, it is claimed in Ref. [4] that the prefreezing of
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hard spheres as found in the simulations [2] is a manifes-
tation of capillary freezing, i.e., confinement induced
freezing of the whole fluid rather than the formation of
crystalline layers at the wall. Using the Kelvin equation,
the capillary freezing is predicted to occur at 98.5% of
bulk crystallization for the plate separation used in
Ref. [2], while prefreezing is found at 98.6% of bulk
crystallization. Finally, recent computer simulations
show [5] that the height of the nucleation barrier for a
crystal nucleus attached to a planar hard wall is about 2
orders of magnitude lower than for the homogeneous
system, but the barrier does not disappear completely.
The presence of a nonzero nucleation barrier is usually
considered incompatible with the complete wetting sce-
nario. Also Groot et al. argued that a system of hard
spheres should not show a tendency to crystallize at the
wall as the density of the fluid layer in contact with the
wall does not reach the two-dimensional hard-disc freez-
ing density when one approaches bulk coexistence [6].

It therefore remains an open question as to whether or
not complete wetting by the hard-sphere crystal occurs at
the smooth hard wall-fluid interface. In this Letter, we
provide evidence for complete wetting based on extensive
computer simulations.

In principle, the complete wetting scenario can be
confirmed by calculating the contact angle �, defined by
cos� � ��wf � �ws�=�fs, where �wf, �ws, and �fs are,
respectively, the interfacial tension between the wall-fluid
phase at a bulk density �b � �f, the wall-crystal phase at
�b � �s, and the solid-fluid interface at bulk coexistence.
The densities of the coexisting bulk fluid and bulk solid
phase of hard spheres are �f�

3 � 0:943 and �s�
3 �

1:041, respectively [1]. A vanishing contact angle corre-
sponds to complete wetting of the wall-fluid interface by
the crystal phase. One might suppose that this issue could
be settled by calculating interfacial tensions using density
functional theory. However, these calculations are very
sensitive to the precise details of the functional and they
are complicated by the difficulty in describing the sym-
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metry and rapid spatial variations in the density for the
solid and solid-fluid interface. Using a full free minimi-
zation of the density functional based on a weighted
density approximation, Ohnesorge et al. calculated the
three interfacial tensions and found that cos� � 1:15[7].
They conclude that the wall is wetted completely by the
solid phase with the (111) axis normal to the wall. How-
ever, the theoretical absolute values of the interfacial ten-
sions j�wfj and j�wsj are about 60% above the absolute
values calculated recently in simulations[8] and the theo-
retical �fs is 50% smaller than found in simulations [9].
A free minimization study of the recent fundamental
measure theory, which is known to be more accurate for
describing the bulk [10], is lacking. Using the interfacial
tensions from simulations [8,9], we find cos� � 0:98�
0:36. Thus we are unable to draw any definite conclusions
given the statistical accuracy of the existing results.

In order to investigate the adsorption and, in particular,
the wetting properties of a fluid, it is important to study a
bulk fluid in contact with a single wall. This single-wall
system is difficult to treat in simulations, since the fluid in
contact with the wall at z � 0 cannot be treated with pe-
riodic boundary conditions in the z direction. Recently, a
new simulation method was developed for treating such a
system [11]. A fluid is simulated under the condition that
the density far from the wall reaches a bulk density �b by
imposing a penalty function which suppresses large de-
viations from �b. Applying this technique to the present
system allowed us to study only the onset of prefreezing,
as we were not able to find a penalty function that sup-
presses the density fluctuations from �b adequately when
we approach bulk coexistence. Note that the prefreezing
found in previous simulations [2] does not occur until a
few percent below bulk crystallization. Density fluctua-
tions by more than a percent at a bulk density that is just
below bulk crystallization results in additional surface
transitions, which should be avoided.

In many simulations of adsorption phenomena, the fluid
is confined between two identical walls in the xy plane,
located at z � 0 and z � Lz. The additional wall at z �
Lz should not affect the adsorption of the fluid at the wall
of interest at z � 0 provided Lz is sufficiently large that
there is a flat portion of the density profile in the central
region of the slit. A drawback of using large Lz is that long
simulation times are needed which may hamper a system-
atic study of the growth of a thick wetting film. However,
using smaller values of Lz can lead to finite size (capil-
lary) effects and these may hinder the observation of the
single-wall phenomena of interest.

In this Letter, we take advantage of the competition
between capillary effects and single-wall (wetting) phe-
nomena in planar slits. By making a systematic study of
the effect of plate separation, we were able to distinguish
a regime where complete wetting of the hard-sphere
crystal appears to occur, which is a single-wall phenome-
non (i.e., independent of plate separation), from the phe-
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nomenon of capillary freezing, which depends on plate
separation.

We perform extensive Monte Carlo simulations of pure
hard spheres with a diameter � confined between two
planar hard walls at different wall separations Lz. In
many previous simulation studies, the external pressure
normal to the walls Pz is kept constant. This requires very
long equilibration times due to volume fluctuations.
Moreover, for finite Lz, Pz is not directly related to a
bulk pressure. We therefore decided to perform our simu-
lations in the canonical ensemble, i.e., we fix the number
of particles N and the volume V � LxLyLz. The tempera-
ture T is an irrelevant quantity for systems with only
hard-core interactions. Our initial configuration is a face-
centered-cubic crystal at a density �s with the (111) axis
normal to the walls. Simulations of wall-induced crystal
nucleation show that the first particles that crystallize on
a smooth hard wall form a (111) plane with a lattice
spacing that is commensurate with a bulk density �s [5].
Moreover, complete wetting by the hard-sphere crystal
can only occur by the coexisting bulk crystal with density
�s. Transverse dimensions (and dimensions in the
z-direction) that are incommensurate with a bulk crystal
at density �s result into stresses in the solid. In that case,
we expect that the wetting scenario shifts towards higher
densities or that complete wetting will disappear. The
transverse dimensions of the simulation box are Lx �
8:86� and Ly � 9:59� and the second wall is at Lz �

21:8�, Lz � 43:5�, Lz � 65:21�, and Lz � 86:91�. We
also performed simulations for a system with Lx �
13:29�, Ly � 13:43�, and Lz � 43:5� in order to check
the system size dependence and we found good agreement
with the results obtained from the smaller system. The
number of particles N in our initial configurations are,
respectively, N � 1920, 3840, 5760, and 7680. We per-
form simulations at different bulk densities �b < �f by
removing particles in our initial configuration, while
keeping the box dimensions fixed. Here �b is determined
from the flat central part of the measured density distri-
bution ��z�. Typically, 107–108 Monte Carlo sweeps were
needed for equilibration, and the profiles were accumu-
lated in bins of width �z � 0:01� over a further 107

sweeps (one sweep is one attempted move per particle).
Figure 1 shows the density profiles ��z� for Lz � 43:5�

at varying bulk densities �b. At the top, the density
profile of a fcc crystal with �b�

3 � 1:041 and the (111)
axis normal to the walls is shown, while the density
profile at the bottom is that of a liquid with �b�

3 �
0:9246� 0:0005. The two density profiles in the two
middle figures indicate the formation of crystalline layers
at the wall clearly: ��z� drops to zero between the density
peaks close to the walls. The density profile in the central
region of the slit is flat and can be associated with a bulk
fluid at �b�

3 � 0:938� 0:002 and 0:935� 0:001, respec-
tively. We clearly observe that the thickness of the portion
of the film with crystalline ordering increases with
108303-2
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FIG. 1. Density profiles ��z� of hard spheres between two
planar hard walls at separation Lz � 43:5�, from which we
determine the bulk densities �b�

3 � 1:041, 0.938, 0.935, and
0.9246 from top to bottom.
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increasing �b. The growth of the thickness of the crys-
talline film can also be appreciated by calculating the
adsorption ��2 � �N � �bV��

2=�LxLy� for varying �b.
Figure 2 shows � as a function of �b for four values of Lz.
We observe that the adsorption increases when �b ap-
proaches �f (denoted by the vertical dashed line) in
agreement with Ref.[2]. The error bar for � can be ob-
tained from the error in �b. For comparison, we also plot
an empirical fit obtained from simulations for the adsorp-
tion of a hard-sphere fluid at a hard wall [12]; the latter
was made for values of �b�3 well-removed from �f. For
�b�

3 * 0:925, the adsorption deviates from this fit due to
the formation of crystalline layers at the wall. In the inset,
we show the adsorption as a function of �b obtained from
our single-wall simulations using the penalty function.We
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FIG. 2. The adsorption � of a fluid of hard spheres in a planar
slit versus the bulk density �b for wall separations Lz=� �
21:8(	), 43.5(�), 65.21(
), 86.91(�). The near horizontal
dashed line denotes an empirical fit to � obtained from earlier
simulations [12] at values of �b well-below the bulk transition
at �f (vertical line). The near vertical portion of � correspond
to capillary freezing. The inset shows a jump in � correspond-
ing to the crystallization of the first fluid layer obtained from
single-wall simulations. Note the pronounced hysteresis.
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see a clear jump in the adsorption corresponding to a first-
order phase transition. Calculating the in-plane correla-
tion functions we can associate the lower branch with a
system where all the layers adsorbed to the wall are
fluidlike, while the upper branch corresponds to a system
where the first layer at the wall is frozen. Consequently,
the crystallization of the first layer is discontinuous in
accordance with the observation of a nucleation barrier of
a crystal nucleus of hard spheres (which appears to be
very flat and about one layer thick) at a smooth hard wall
[5]. Unfortunately, we were not able to study whether the
subsequent layers freeze in a first-order or continuous
fashion. Nevertheless, the form of the density profiles
and the increased adsorption as a function of �b lend
strong support for complete wetting by the hard-sphere
crystal in the limit �b ! �f. More quantitative support
for the complete wetting scenario is provided by the mea-
sured logarithmic increase of the adsorption � as a func-
tion of ��f � �b�=�f. Figure 3 shows that the adsorption
curves consist of three regimes: (i) At �b�

3 & 0:925 we
find that � is close to the empirical fit for the adsorption
obtained in Ref. [12]. (ii) At large �b, we find a vertical
rise in the adsorption, which we associate with capillary
freezing induced by the presence of two walls. The bulk
density �c at which this jump occurs increases with wall
separation and approaches �f from below. We plot �c as a
function of L�1

z in Fig. 4. We see that �c decreases
significantly with decreasing Lz. In the limit Lz!1
the capillary freezing density �c approaches bulk freez-
ing �f linearly in L�1

z . This linear limiting behavior can
be derived from the Kelvin equation, which reads

���coex ��c� �
2���wf � �ws�

��s � �f�Lz
(1)
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FIG. 3. The adsorption � of a fluid of hard spheres in a planar
slit versus ��f � �b�=�f for four values of Lz. The symbols are
as in Fig. 2. For �b�

3 < 0:925, the adsorption is close to the
empirical fit [12]. The vertical rise in � found at large �b
corresponds to capillary freezing. For intermediate �b the
thickness of the wetting crystalline film grows logarithmically.
The asterisks are results for Lx � 13:29�, Ly � 13:43�, and
Lz � 43:5� and confirm there is negligible finite system size
dependence.
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FIG. 4. Capillary freezing density �c as a function of L�1
z ,

obtained from the vertical rise of � observed in Fig. 3. The
dashed straight line is the prediction of the Kelvin Eq. (1).
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where �coex and �c are the chemical potentials at bulk
coexistence and at capillary freezing, respectively. For
sufficiently large Lz, we can expand the left hand side of
Eq. (1) about �f. Using the Carnahan-Starling expression
for the chemical potential of the bulk fluid, we arrive
at �@��=@�b�3�j�f�3 �208:15 with �f�3�0:943. Com-
bining this result with Eq. (1) and using �s�3 � 1:041,
and the interfacial tensions obtained from simulations
[3], i.e., ��wf�

2��3:80�0:18 and ��ws�
2 � �4:37�

0:10, we find ��f � �c��
3 � 0:2051�=Lz, denoted by the

dashed line in Fig. 4. For Lz=� � 43:5, 65.21 we find that
the capillary freezing is predicted accurately by the
Kelvin equation. For Lz � 86:91�, the Kelvin equation
predicts that capillary freezing should occur at ��f �

�b�=�f ’ 0:85� 10�3. However, we were not able to
reach this regime as the statistical errors of �b and �f

are now of the same order. (iii) For 0:925 & �b�
3 &

�c�
3, we observe that � increases logarithmically as

�b ! �c. The adsorption can be fitted by ��2 � A1 


A2 ln���f � �b�=�f�, with fit parameters A1��2:2�0:2
and A2 � �0:73� 0:04. We recall that general arguments
for complete wetting for systems with short-ranged forces
imply the wetting film thickness l should diverge as
��b ln���f � �b�=�f� where �b is the bulk correlation
length of the wetting phase in this case the crystal. For
very thick films l=� � �=�2��s � �f��� so that jA2j ’

2�b��s��f��
2, implying �b=�’3:8�0:2. Note that

we have divided the adsorption by two as � is defined
for two walls.We clearly see that all the adsorption curves
in Fig. 3 lie close to each other for �b < �c. We also
observe from Fig. 3 that the formation of crystalline
layers and the logarithmic growth of the film thickness
both start at ��f � �b�=�f ’ 0:017, i.e., 98.3% of bulk
crystallization independent of plate separation, and can,
hence, both be interpreted as a single-wall phenomenon.
However, we were only able to follow the logarithmic
growth in a small density regime, i.e., 10�3 & ��f��b�=
�f &10�2 and one could argue that the logarithmic
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growth might cease just before bulk coexistence, due to
the presence of stresses. However, it is hard to believe that
stresses can arise in a hard-sphere crystal which is grown
at a smooth planar wall. Earlier studies for a (111) pat-
terned surface show that complete wetting of the hard-
sphere crystal already sets in at 29% of bulk crystalliza-
tion [13]. It is tempting to argue that in the present case
the adsorbed crystalline layers at the wall act as a tem-
plate which induces crystallization, resulting in complete
wetting in a similar fashion to a static patterned surface.

In conclusion, we provide strong evidence for complete
wetting by the hard-sphere crystal of the wall-fluid inter-
face as our simulations show the formation of crystalline
layers at the wall at 98.3% of bulk crystallization and the
logarithmic growth of the crystalline film, which are
both independent of plate separation (single-wall phe-
nomenon) and well separated from capillary freezing
that does depend on plate separation. The interfacial
behavior of hard spheres near a hard wall serves as a
good model for colloidal hard spheres and can play a
reference role for more complicated fluids. It is interesting
to study the effect of size polydispersity and of nonad-
sorbing polymer, giving rise to depletion interactions, on
the interfacial behavior. This effect will be the focus of
future work.
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