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Progress is reported on several questions that bedevil understanding of granular systems: (i) Are the
stress equations elliptic, parabolic, or hyperbolic? (ii) How can the often-observed force chains be
predicted from a first-principles continuous theory? (iii) How do we relate insight from isostatic systems
to general packings? Explicit equations are derived for the stress components in two dimensions
including the dependence on the local structure. The equations are shown to be hyperbolic and their
general solutions, as well as the Green function, are found. It is shown that the solutions give rise to
force chains, and the explicit dependence of the force chains trajectories and magnitudes on the local
geometry is predicted. Direct experimental tests of the predictions are proposed. Finally, a framework
is proposed to relate the analysis to nonisostatic and more realistic granular assemblies.
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FIG. 1. The local geometry around a grain g. The vectors ~rlg

connect points clockwise around each grain g and form loops,
e.g., l, around physical voids. The vectors ~Rlg extend from grain
centers to loop centers. The geometry around the grain is
characterized by the fabric tensor Ĉg �

P
l ~r
lg ~Rlg, whose anti-

symmetric part gives the area Ag �
P

la
lg that is the shaded

area. The symmetric part P̂ couples to the stress in Eq. (1).
Granular systems have become a subject of intensive
research in recent years both due to their enormous
technological importance and the fundamental theoreti-
cal challenges that they pose [1]. In particular, stress
transmission has focused much attention following ex-
perimental [2,3] and numerical [4] observations that
arching effects give rise to nonuniform stress fields [5]
and, in particular, to chainlike regions of large forces
which cannot be straightforwardly described by conven-
tional approaches [6]. It has been recognized that to fully
understand this phenomenon in general granular packing
it is essential to first understand stress transmission in
isostatic systems [5]. Isostatic states are configurations of
grains in which the intergranular contact forces can be
determined directly from statics, namely, force and
torque balance, without reference to stress-strain relation.
These states are characterized by a low mean coordina-
tion number, which depends on the dimensionality and
the roughness of the grains. These states have been shown
to be easy to approach experimentally [7]. Several em-
pirical [8] and statistical [5,9] models have been proposed
for the macroscopic equations that govern the stress field
in such systems. Very recently, however, the two-
dimensional case has been solved from first-principles
on the scale of a few grains [10]. The main result of the
new theory is an equation that relates directly between the
stress tensor �̂ and a rank-two symmetric fabric tensor P̂
which characterizes the microstructure:

pxx�yy � pyy�xx � 2pxy�xy � 0: (1)

This ‘‘constitutive’’ relation is a local manifestation of
the torque balance condition beyond the global require-
ment the �̂ � �̂T [10]. The tensor P̂ can be defined at the
grain level as

pij �
1

2

X
l

�rlgi R
lg
j � rlgj R

lg
i �; (2)

where the indices i; j denote the Cartesian components
0031-9007=04=93(10)=108301(4)$22.50 
x; y, the vectors ~rlg and ~Rlg are shown in Fig. 1, and the
sum runs over the loops l that surround grain g.
Equation (1) together with the conventional force and
torque balance conditions

~r � �̂ � ~g; �̂ � �̂T (3)

give a closed set of equations for the stress tensor. Here
~g � �gx�~r�; gy�~r�� is a position-dependent external force
field. The only problem with Eq. (1) was that the volume
averages of pij vanish and therefore that it couples be-
tween the stress field and fluctuations in local geometric
properties. This made its coarse graining to macroscopic
scales a nontrivial task, but this difficulty was eventually
resolved in [11].

Relation (1) gives a fundamental closure of the stress
equations and it is therefore useful to test its implications
on two central questions: (i) Are the stress equations
elliptic, parabolic, or hyperbolic [2,8,12,13]? This ques-
tion is fundamentally significant because elasticity theory
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predicts elliptic equations, and any other form implies a
significant departure from this paradigm. (ii) How can the
continuum theory predict and quantify the emergence of
the experimentally observed force chains? Both these
issues are resolved here using the clear geometric inter-
pretation of Eq. (1) from the grain level up. This Letter is
structured as follows: First, explicit equations for the
stress components �ij are derived and their form is de-
termined. Second, the general solution of the equations is
found and the Green function for an infinite medium is
presented. Third, the solution is analyzed and it is shown
to give rise to force chains whose individual trajectories
can be predicted. Next, experiments are suggested which
can directly test the new results. Finally, a short discus-
sion is presented on the relevance and a possible extension
of these results to general nonisostatic systems.

To determine the stress field, let us consider an isostatic
system in mechanical equilibrium, whose microstructure
is fully known, and solve Eqs. (1) and (3). To solve for �xy,
for example, substitute �yy from Eq. (1) into the balance
Eqs. (3), and then eliminate �xx from the two balance
conditions by differentiating one with respect to x and the
other with respect to y. Since the coarse-grained pij are a
measure of the fluctuations of the geometric properties,
their gradients are neglected relative to the field gradients.
This leaves the equations valid for disordered systems; in
ordered periodic structures pij � 0 identically. A similar
manipulation for �xx and �yy gives

�pxx@xx � 2pxy@xy � pyy@yy��ij � fij�x; y�; (4)

where @� stands for @=@� and

fxy � pyy@ygx � pxx@xgy;

fxx � �pxx@x � 2pxy@y�gx � pxx@ygy;

fyy � �pyy@y � 2pxy@x�gy � pyy@xgx

are functions of the external loading. Note that these
functions vanish identically if ~g is constant (e.g., constant
gravity). It can be shown that pxy must be finite, and, for
generality, let us take pxx and pyy to be finite too. When
either of these vanishes, the solution to Eqs. (1) and (3)
simplifies but the qualitative behavior remains un-
changed. A key observation is that under the following
change of variables�

u
v

�
�

�
1 0

�
pxy
S

pxx
S

��
x
y

�
; (5)

where S �
��������������
�detP̂

p
, Eq. (4) takes the form

�@uu � @vv��ij � fij: (6)

Equations (6) make it possible to resolve the ongoing
dispute regarding the nature of the stress field: They
involve only second derivatives and so rule the parabolic
form flat out. This suggests that diffusion-like interpre-
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tations, which have been proposed to explain the mean-
dering of force chains, are irrelevant. This leaves two
possibilities: either the equations are hyperbolic or they
are elliptic. From (5) and (6) we see that the answer
hinges on the sign of detP̂. When it is negative (positive),
v is purely real (imaginary) and the equation is hyper-
bolic (elliptic). Now note that on the granular level P̂g �P

lP̂
lg, where P̂lg � 1

2 � ~r
lg ~Rlg � ~Rlg ~rlg� is the contribution

of loop l to P̂g, and the sum runs over the loops around
grain g (see Fig. 1). It can be readily verified that
��detP̂lg� � �alg�2 > 0, where alg is the area enclosed
by the quadrilateral shown shaded in Fig. 1. However,
detP̂lg �

P
ldetP̂

lg, and therefore it does not enjoy such a
convenient interpretation. Rather, a little algebra leads to

S �

���������������������������������������������������������������������
�Ag�2 �

X
ll0
� ~rlg 	 ~rl

0g�� ~Rlg 	 ~Rl0g�

s
; (7)

where Ag �
P

la
lg. A careful consideration of the term

under the square root leads to the conclusion that its
average over a sufficiently large area must be positive
definite. For example, in a deformed honeycomb structure
with mean separation c between centers of neighboring
grains the average of S is 9c2=4> 0. Nevertheless, it is
unclear whether S can fluctuate to negative values on
small scales. Observations made on topologically equiva-
lent two-dimensional structures [14], such as liquid-
crystalline foams [15] and emulsions [16], reveal no
regions with imaginary v down to the cellular (granular)
scale. But this may be a consequence of the isotropy of
those systems and it is yet unclear whether small clusters
of grains or foam vertices with S < 0 can exist in aniso-
tropic systems. That said, the above result on the average
of S means that, even if such anisotropic systems exist,
clusters of ‘‘elliptic defects’’ cannot survive above a
certain length scale, and therefore Eq. (6) is indeed
hyperbolic on macroscopic scales.

The general solution of Eq. (6) is

�̂ � Â�
�� � v� u� � Â���� � v� u�

�B̂��� B̂�� � 1
4

Z� Z�
F̂��0; � 0�d�0d� 0: (8)

Here F̂ is a rank-two matrix whose components are fij,

Â
 �

 pxx
�
 1

1 �


pxx

!
; B̂
 �

 �


pyy
1

1 �


pxx

!
b
xy;

and �
 � pxy 
 S. In solution (8) 
���, ����, and the
coefficients b
xy are determined by the boundary data. The
lines of constant

� � �pxxy� ��x�=S; � � �pxxy� ��x�=S (9)

are the characteristic curves of the equations and play a
significant role in the behavior of the stress. The Green
function of Eq. (6) when fij is replaced by a " function at
108301-2
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�u0; v0� within an infinite medium is

G�u; v; u0; v0� �
1
2fH�v� v0 � �u� uo��

�H�v� v0 � �u� u0��g; (10)

where H is the Heaviside step function.
For illustration, consider a system occupying the half-

plane x > 0 that is loaded along the y axis with the
boundary conditions �ij�x�0;y��Uij�y� and @x�ij�x �

0; y� � Vij�y�. The choice of these boundary data follows
the hyperbolic nature of Eq. (6). The system is also
presumed to be under a constant field ~g. It is convenient
to first convert the boundary conditions to the u-v plane,
where they become the Cauchy data. The solution for the
stress then becomes

�ij �
1

2

�
Uij

�
S
pxx

�
�
�Uij

�
S
pxx

�
��

�
1

2

Z S�=pxx

S�=pxx

�
Vij�t� �

pxy

S
U0
ij�t�

�
dt; (11)

where U0
ij is the derivative of Uij with respect to its

argument. The lack of symmetry in (11) upon interchang-
ing x and y is a result of the asymmetric choice of the
variables u and v with respect to x and y. The acid test of
this solution is that it can explain the emergence of force
chains so often observed in planar systems [2– 4]:
Suppose that the boundary loading on the granular system
is localized: namely, Vij and U0

ij are very narrow for all
�ij. This is typically what happens when grains, which
cannot form a perfect straight line at the boundary, are
compressed by a flat surface, which localizes the loading
on protruding grains. From (11) we see that the localized
load propagates into the system along the characteristic
xy xx

v

u

y = (p   −   S   ) x / p

p / x )   S   +   p( = y

x

2/1

yx

xx

1/2

y

FIG. 2. Two force chains bifurcating from a localized force
applied to the boundary. The trajectories follow the local
characteristic curves � � C� and � � C� . The characteristics,
which are straight lines in the u-v plane (inset), meander in the
x-y plane according to the local values of the components of P̂.
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curves � � c� and � � c� , as shown schematically in
Fig. 2. In the x-y plane the characteristic curves meander
due to the local dependence on the fluctuating geometric
tensor P̂, and the propagation of the forces into the system
will correspondingly deviate from straight trajectories.
For a concrete example, suppose that for the xx compo-
nent the boundary conditions are Uxx�0; y� � e�y2=2d2 ,
with d the size of the loading region, and Vxx�0; y� � 0.
Then

�xx �
1

2

��
1�

pxy

S

�
e�S�2=2d2p2

xy �

�
1�

pxy

S

�
e�S�2=2d2p2

xx

�
(12)

comprises two bell-shaped peaks that propagate along the
two characteristic curves. It is now possible to calculate
the force along the characteristics: F� � �̂ � ~t� and F� �

�̂ � ~t� , where ~t� and ~t� are the unit tangents along the
curves. Thresholding and visualizing the force field mag-
nitude there will emerge two lines tracing the character-
istics, whose thicknesses depend on the threshold level.
These are the force chains. One may argue that force
chains can be observed on scales of one or two grains,
while Eqs. (1) and (3) are continuous and coarse-grained
and so is their solution. But the only constitutive data in
the solution involves the fabric tensor P̂ and this tensor is
well defined down to the granular scale. Therefore there is
no reason that solution (11) should not apply also down to
this scale. This analysis not only explains the force
chains, but it also predicts their individual trajectories

as a function of the local geometry. For example, ~t��

�pxx;�
��=

�������������������������
p2
xx�����2

p
and ~t� ��pxx;�

��=
�������������������������
p2
xx�����2

p
.

More general forms of boundary loading can be re-
garded as a superposition of many localized forces such
as the one described above. These will initiate pairs of
chains that will propagate into the material [3].

When pxx � 0 or pyy � 0, the characteristic curves
take a slightly different form. For example, for pxx � 0,
� � y� �1� pyy�x=�2pxy�, � � y� �1� pyy�x=�2pxy�,
and the functions fij change slightly. Nevertheless, the
feature of propagation from the boundaries into the
system along the characteristic curves remains exactly
the same.

The above predictions concerning the force chains can
be used to test the theory experimentally as follows:
Apply a localized load on the boundary of a granular
system where the force chains can be traced. This can be
achieved, e.g., using photoelastic grains [3] or liquid-
crystalline foams [15] between crossed polarizers. By
scanning the local microstructure, one can compute the
fabric tensor P̂, and, then, using expression (3) for � and
� , one can compute the trajectories of the characteristic
curves in the vicinity of the concentrated load. These
trajectories can be checked for coincidence with the
observed trajectories of the force chains to yield a
straightforward test of the theory.
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Finally, what is the relevance of these results to general
granular packings? The following offers a framework for
the extension of the above theory to all dry granular sys-
tems. The ideas presented are based on insight from a
recent experiment on inertia-free growing 2D granular
piles of rigid and rough grains [7]. Two results of that
experiments are of major significance: One is that the
isostatic state (IS) can be approached arbitrarily closely.
The other is that this state can be regarded as a critical
point where a certain length scale diverges. This length
scale is the size of a yield front which moves ahead of
the consolidating pile wherein grains constantly shift
before they finally consolidate. Significantly, this length
characterizes the range of rearrangement as the system is
perturbed locally. At the IS the mean coordination num-
ber is three, the material is marginally rigid, grains are
just stable, and a small displacement anywhere causes
rearrangement far away. The range of rearrangement is
the correlation length, *. A critical-like behavior has
also been observed in other experiments [17]. As more
contacts are made, the system moves away from the IS,
the density increases, grains are better supported, and
rearrangement is more confined. Since rearrangement is
mediated by forces, it follows that the correlation length
also describes the typical length of force chains. Thus at
the IS force chain are expected to span distances com-
parable to the system size. Indeed, infinitely long chains
are exactly the prediction of Eqs. (10) and (11). Away from
the IS elastic domains form in which the stress equa-
tions are elliptic. When a force chain is incident on an
elastic region, it can be shown that it splits into several
weaker forces. The idea of the IS as a critical point has
already been entertained in literature [18], but within
elasticity theory, thus failing to take into consideration
the hyperbolic nature of force chains. It is proposed here
that granular systems exhibiting finite force chains are
neither at marginal rigidity nor fully elastic, but rather a
mixture of these two states. This means, for example, that
* would decay as a power of the density difference from
the critical density identified in [7]. Thus for a com-
plete theory of stresses in granular media it is essential
to address such two-phase materials. Now that we pos-
sess a theory of isostatic state, it is this author’s belief that
the extension to two-phase systems is well within reach
and a detailed analysis along these lines is under prepa-
ration [19].

To conclude, this Letter reported several results: (i) For
isostatic systems it has been found that on large scales all
the stress components follow an identical hyperbolic
equation, but with different source terms. (ii) The general
solutions for the stress field were found and analyzed, and
the Green function for an infinite medium was presented.
(iii) It was shown that the solutions give rise to force
chains, whose individual trajectories can be predicted
explicitly. (iv) Experiments were suggested which can
directly test the validity of the new results. (v) It is
proposed that general granular packings are in fact two-
108301-4
phase mixtures of isostatic and elastic regions, and a
framework to describe such materials has been suggested.
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