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Localized Single-Stranded Bubble Mechanism for Cyclization of Short Double Helix DNA
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Recent experiments indicate that double-stranded DNA molecules of approximately 100 base pairs in
length have a probability of cyclization which is up to 105 times larger than that expected based on the
known bending modulus of the double-helix. We argue that for short molecules, the formation of a few
base pairs of single-stranded DNA can provide a ‘‘flexible hinge’’ that facilitates loop formation. A
detailed calculation shows that this mechanism explains the experimental data.
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FIG. 1. Cyclization j-value for short DNAs. Experimental
data [3] are indicated by open circles ( � ). Theoretical results
are shown for the semiflexible polymer model (�), and for the
model of the text with �=kBT � 9 (�), 10 (�), 11 ( � ), and 12
(�). A bubble excitation energy of 11kBT produces a large
enhancement of the cyclization probability for chains smaller
than 200 bp; note that in this short-chain regime, a small
change in � causes a large change in cyclization probability.
Inset sketches indicate the circular and teardrop configurations
discussed in the text. The solid line is the empirical formula
from [14] for the semiflexible model. Inset shows j-value of the
semiflexible polymer (� � 1) calculated from 150 bp to
104 bp, showing a peak position �500 bp.
Bending of stiff double-stranded DNA (dsDNA) into
loops is essential to many processes in living cells. Two
important examples include regulation of gene expression
via contact of a nearby regulatory sequence to the begin-
ning of a gene [1], and the packaging of DNA into nucle-
osomes [2], the basic structural unit underlying the
chromosome. In these cases, DNA circles shorter than
30 nm (100 base pairs) form. This is remarkable since this
is significantly shorter than the DNA persistence length of
A � 50 nm (150 bp): such small loops are usually imag-
ined to be possible only with the help of DNA-bending
proteins.

This view has been challenged by a recent test-tube
experiment [3] on 94 and 116 base pair DNAs showing
loop formation probabilities >104 times larger than
would be predicted by the persistence-length-based semi-
flexible polymer model of DNA bending [4] (see Fig. 1).
The experiments also showed that there was a very strong
sequence dependence of the loop formation probability.
Longer DNAs (322 bp) formed loops with the probability
expected from models based on semiflexible polymer
theory, ruling out the possibility of experimental error.

In this Letter, we propose that these results can be
explained by internal strand-separation fluctuations
which transiently convert a double helix to much more
flexible single-stranded DNA (ssDNA). Although ener-
getically expensive and therefore rare excitations, these
internal ‘‘bubbles’’ become favorable to smooth bends
when forming loops of less than about 150 base pairs.
A simple semiquantitative calculation supports this pic-
ture; we also present a detailed calculation using a novel
transfer-matrix technique for calculation of end-to-end
distances along semiflexible polymers. This indicates that
a realistic estimate of the energetic cost of bubble for-
mation leads to a large enough enhancement of cycliza-
tion probability for short DNAs to be a plausible
explanation of the experimental data.

The conventional theory of cyclization of short DNAs
uses the semiflexible polymer model [5]. The bending
energy of a molecule of length L is taken to be that of
thin-beam elastic theory [6]:
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Here, t̂�s� is the unit tangent vector at arclength position
s. Writing the energy in kBT units makes the dimension of
the elastic constant A a length: it is called the persistence
length, and is the correlation length for thermal fluctua-
tions of the tangent vector [5]. To see this, consider the
energy of a thermally excited bend by one radian in a
length L, which is �E � kBTA=L�. This is comparable to
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kBT when L � A; thus thermally excited bends of about
one radian will occur over regions of length roughly A.

The energy required to smoothly bend a DNA of length
L into a circle to allow its cyclization will therefore be
E=kBT � 2�2A=L. When L is comparable to or smaller
than A (50 nm or 150 bp), this energy becomes large
compared to kBT (we note that the cyclization reaction,
which is catalyzed by the enzyme T4 DNA ligase, re-
quires the juxtaposed ends to be nearly parallel). For the
94 bp DNAs studied by Cloutier and Widom [3], this is
E � 31kBT, large enough to render cyclization of a 94 bp
dsDNA unobservable.

The most likely explanation we see for the results of
Cloutier and Widom [3] is based on excitation of a small
region of strand-separated DNA. This will act as a ‘‘flex-
ible hinge’’ since single-stranded DNAs are very flexible;
the persistence length of ssDNA has been observed to be
roughly 0.7 nm or one base [7] (the length of ssDNA is
0.7 nm per base, longer than that of the dsDNA which is
0.34 nm per helically folded base pair). Thus, the persis-
tence length of a strand-separated bubble region will be
roughly 2 bp, much shorter than the 150 base pair persis-
tence length of dsDNA. Such a flexible hinge can greatly
reduce the bending energy cost of cyclizing a short DNA.

However, we must also estimate the free energy cost of
bubble formation. There are two contributions to this free
energy: the sequence-dependent base-pairing and stack-
ing free energy measured in experiments on melting of
short DNAs [8]; for the conditions relevant to the experi-
ments of Cloutier and Widom (25 C, 0.1 NaCl pH 7.5
aqueous solution), this ranges from 1kBT to 4kBT per base
pair opened, depending on sequence. These estimates do
not include the entropic cost of requiring the ssDNAs to
close into a bubble. For a 3 bp bubble, this cost is approxi-
mately 3kBT [9]. Therefore, the total free energy of a 3 bp
bubble under the chemical conditions mentioned above
ranges from � � 6kBT to 15kBT.

If a 3 bp bubble is excited near the middle of our
molecule of length L, it will permit sharp bending at
that point. However, we will still have to have some
bending of the molecule to allow it to cyclize. The
minimum-energy configuration that accomplishes this is
the teardrop shape (Fig. 1 inset), which has a bending
energy of 0.71 times the circle [10], or in kBT units,
14A=L. Thus, the free energy difference between the
bubble-teardrop configuration and the smoothly bent cir-
cle configurations is

Eteardrop 	 Ecircle � kBT
�
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L

�
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Given A � 150 bp and � � 10kBT, we can estimate the
molecule length L
 at which the bubble-teardrop and
circle configurations are equal in free energy by solving
for when Eq. (2) is zero, giving L
 � 85 bp. This very
simple calculation indicates that for sufficiently short
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molecules, the bubble-hinge state will be lower in free
energy than a smoothly bent state.

The above estimate, although suggestive, is not precise
as it does not account for conformational fluctuations that
play a major role in cyclization of short DNAs [11]. We
have therefore carried out a detailed analysis of a model
which combines double-helix bending with bubble-hinge
excitations. Our model is a discretized version of Eq. (1),
based on a series of N segments, each of length b in
double-helix form; the total length of our polymer is L �
Nb. Its Hamiltonian is:
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where the t̂i are tangent vectors describing segment ori-
entations. The ni are two-state variables, indicating
whether segment i is either in double-helix form (ni �
0) or contains a ssDNA bubble (ni � 1). In this Letter, the
dsDNA bending elastic constant corresponds to the per-
sistence length of (1) through a � A=b; the bending
persistence length of the ssDNA bubble is ba0. We will
use b � 1 nm (3 bp), and therefore a � 50, and a0 � 1.
The parameter � is the free energy associated with
creation of a bubble on a segment, and will be taken to
be approximately 10kBT.

We wish to compute the thermal equilibrium probabil-
ity density for the two end segments of this polymer to
be found together and parallel to one another. This
amounts to computing the expectation value of
�2�t̂1; t̂N��3�b

PN	1
j�1 t̂j� (the choice of N 	 1 as the upper

limit for the latter sum corresponds to forcing overlap of
the two end segments; an alternative calculation where
the sum is taken to N gives the same results since we use a
segment length of only 1 nm). Decomposing the three-
dimensional delta function into wave number components
gives us
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This quantity, expressed in units of mols=litre , or M, is
often called ‘‘j-factor’’ in the biochemical literature
[11,12]. Here, NA is Avogadro’s number.

After carrying out the sums over the ni variables, (4)
may be written in terms of a k-dependent transfer matrix
Tk�t̂; t̂0� � eibk�t̂�e	a�t̂	t̂0�2=2 � e	a0�t̂	t̂0�2=2	���, as
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where the integrals over the tangent vectors t̂i in (4) are replaced by the matrix multiplications of (5). The �2�t̂1; t̂N� in
the numerator has become the trace in (5).

The matrix Tk can be computed in the basis of spherical harmonics to be

hlmjTkjl0m0i �
Z

d2td2t0Y

lm�t̂�Tk�t̂; t̂0�Yl0m0 �t̂0�

� 4��	1�m�mm0

X
l2

il2�2l2 � 1�
																																			
�2l� 1��2l0 � 1�

p � l2 l l0

0 0 0

�� l2 l l0

0 m 	m

�

 �e	ail0 �a� � e	��	a0il0 �a0��jl2�bk�; (6)
using spherical harmonic expansions for the exponential
functions in Tk and expressing all integrals of spheri-
cal harmonics in terms of 3j symbols[13]. Here, jl and il
are the spherical Bessel function and the modified
spherical Bessel function of the first kind, respectively.
The simple form of (6) allows the matrix multiplica-
tions of (5), and then the integral over k to be done
numerically with MATHEMATICA using the Gauss
Kronrod method. The calculation is made finite by cutting
off the l-sums at some maximum angular momentum:
depending on the situation, we have used lmax up to 18 to
obtain convergence.

Calculation results are shown in Fig. 1. First, for � �
1, bubbles never occur, and our model reduces to the
conventional semiflexible polymer model (�). Our results
are close to those from Monte Carlo[12] and approximate
numerical calculations [11], showing a peak in the cycli-
zation probability density near 500 bp, a long-length
decay / L	3=2 (Fig. 1, inset) [10], and most important
for this Letter, a severe suppression for less than 300 bp
which is in discord with the experimental data [3].
Calculations for <135 bp become inconveniently lengthy
on the computers (AMD Opteron PCs) we have used,
because the tightly bent configurations require a large
lmax > 20 for convergence of the calculation. Our compu-
tation can be extended to smaller chains by the use of
more powerful computers. Our results for the simple
semiflexible chain agree with the result of Shimida and
Yamakawa (Fig. 1, solid curve) [14].

The filled circle points in Fig. 1 show the cyclization
probability density for � � 11kBT. For large L, the result
is essentially identical to that for � � 1: the ssDNA
bubbles are too rare to change the large-scale polymer
properties. However, below the 500 bp peak, the cycliza-
tion probability does not show a rapid decrease, and
passes close to the experimental data. Even rare appear-
ances (probability per segment e	11 � 2 10	5) of flex-
ible joints along a 150 bp DNA boost the probability of
cyclization by more than 100 times.

An important feature of the experimental data for
94 bp DNAs is a strong sensitivity to sequence composi-
tion. The six different 94 bp molecules studied by Cloutier
and Widom [3] show cyclization probabilities varying
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over a range of nearly 100. Our model, being based on
rare fluctuations, depends exponentially on their energy
�. The triangular points of Fig. 1 shows the cyclization
probability for � � 9 (�), 10 (�), and 12 (�)kBT. A
change in � by 1kBT causes a roughly tenfold change
in cyclization probability for 135 bp. Extension of the
calculation to incorporate sequence dependence is
straightforward; the main problem is reliable prediction
of the sequence dependence of ssDNA bubbles since ex-
isting models for sequence dependence of DNA melting
[8] are based on measurements of strand separation of
whole molecules, and may not be well calibrated for small
internal bubbles.

There should be strong sensitivity of cyclization proba-
bility for short molecules, to even small changes in the
probability of ssDNA bubbles. The strong enhancement of
cyclization probability observed experimentally at 25 C
should thus be enormously sensitive to temperature, since
AT-rich DNA sequences begin to melt by 50 C. At 35 C,
the free energy cost of opening AT-rich 3 bp regions will
thus be reduced by a few kBT.

An interesting effect reported by Cloutier and Widom
is the quite strong sensitivity of cyclization probability to
molecular length. A 1 bp change in length was found to
generate, in some cases, a greater than two-fold change in
j factor. While this dependence on molecular details is
beyond the scope of our model, it emphasizes how sensi-
tive the results are to molecular architecture.

It is possible that a portion of the cyclization enhance-
ment observed might be due to permanent bends [15].
However, the experiments of Cloutier and Widom suggest
that permanent bends are not the main factor driving the
anomalously large cyclization. The molecules used do not
contain known sequence motifs causing the sharp perma-
nent bends necessary to compete with our flexible bubble
mechanism. Furthermore, a sharp permanent bend should
lead to anomalous electrophoretic migration, which was
not observed (see D bands of Fig. 5 of Ref. [3]). Thus, we
are in accord with the conclusion of Cloutier and Widom
that permanent bends are not responsible for the bulk of
the effect they observe. However, the role of spontaneous
bending could be experimentally determined by carrying
out cyclization experiments on 94 bp molecules engi-
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neered to carry known spontaneously bent sequences.
Our calculations may be generalized to the case where a
fixed bend is present in the molecule [16] to predict the
effect of the bend in this case.

We have argued that cyclization of short DNAs pro-
ceeds via formation of a localized structural defect in the
double helix, which turns out to be a transition state lower
in free energy than a smooth bend. This type of defect is
extremely rare and in most experimental situations can be
ignored. However, in this interpretation of the cyclization
experiment of Cloutier and Widom [3], tightly bent con-
figurations are selected, and in that subset of conforma-
tions, flexible-hinge bubbles dominate. Finally, we note
that our transfer-matrix approach makes possible essen-
tially exact numerical calculation of end-to-end distribu-
tions for many variants of the semiflexible polymer
model relevant to biophysical experiments; for example,
models for folding of DNA by proteins that bind along its
length [16].
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