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Dynamic Instabilities of Fracture under Biaxial Strain Using a Phase Field Model
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We present a phase-field model of the propagation of fracture under plane strain. This model, based on
simple physical considerations, is able to accurately reproduce the different behavior of cracks (the
principle of local symmetry, the Griffith and Irwin criteria, and mode-I branching). In addition, we test
our model against recent experimental findings showing the presence of oscillating cracks under biaxial
load. Our model again reproduces well observed supercritical Hopf bifurcation and is therefore the first

simulation which does so.
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In recent years, the physics community has seen a
rebirth of interest in the problem of dynamic fracture.
This rebirth was kindled by a series of experiments
revealing that the current engineering approach to crack
propagation, namely, the coupling of linear elasticity to
an empirical energy balance law for crack tip motion,
cannot account for the richness of actual fracture phe-
nomenology [1]. Specifically, dynamical instabilities
which drive the system away from a single crack propa-
gating in a straight line require more sophisticated atten-
tion to the actual tip region, the so-called process zone.

Given the above, it is clear that one needs a framework
which can couple local degrees of freedom involved in
breaking interatomic bonds to global elasticity. Strain
softening has been used to describe microcracking in
the process zone, but this approach allows only the propa-
gation of the crack along the discretization lattice [2,3].
Other approaches using a nonlinear elasticity where the
stress fully relaxes at high strain have also been proposed.
They require the use of higher order terms to avoid being
ill posed and they have not been able to reproduce features
of brittle fracture [4]. To circumvent these problems the
phase-field modeling of fracture uses an order-parameter
field (the degree of ““brokenness’) which then couples to
the elastic strain in a manifestly continuum-level formu-
lation. The fact that the system does not need to be placed
on a lattice avoids dynamical artifacts associated with the
breaking of translational and rotational symmetry of
discrete models [5,6]. One such phase-field model
[Karma-Kessler-Levine (KKL)] [7] has been shown to
correctly encompass much of the expected behavior of
mode-III (out-of-plane) cracks [8].

Here, we extend the KKL model to full vector elasticity
and test its genericity. Our major interest is in seeing
whether a recently discovered supercritical Hopf bifurca-
tion to oscillating cracks under biaxial loading [9] (see
Fig. 1) is in fact reproduced by KKL; we see that in fact it
is. This successful simulation of the crack oscillation has
the dual benefit of demonstrating that the instability is not
dependent on any special properties of the specific mate-
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rials used in the experiment (rubber) and also of giving us
more confidence in the phase-field methodology.

We start with the KKL phase-field model [7]. Here, a
sheet of fractured elastic material is represented by the
elastic displacement field u,, u, and by a phase-field vari-
able ¢ that can be interpreted as the proportion of intact
interatomic links. The evolution equation of u, and u,
derives from a modified elastic energy:

E = f[dxdyg(d))(%/\e%i + ,u,e%), (1

where g = (4 — 3¢)@? is a function of ¢ chosen such that
g(0) =0, g(1) =1, and g'(0) = ¢’(1) = 0; this specific
choice is discussed in [7]. The tensor €;; = (d;u; +
d;u;)/2 is the strain tensor. The evolution equations for
u, and u, are then
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The corresponding evolution equation of ¢ is

dV(¢) _dg(e)
do dé

70,0 =A¢ — (Ep —€) ()

FIG. 1. Left: definition of in-plane loading modes: top—-
mode-II loading; bottom—mode-I loading. Right: geometry of
the experiment reported in [9]. An elastic sheet is extended in
both x and y directions. The local strain is bigger in the y
direction than in the x direction. The crack speed is denoted by
c¢. In simulations performed here W was taken equal to 60 and
at y=0 and y = W, u, was kept constant in time, so that a
vertically propagating crack cannot reach y = W or y = 0.
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where V(¢) = 4[¢(1 — ¢)]* is a double well potential
and
Ey=1Ael + Me?j if tr(e) >0 @
Ey=1Ael + ,LLG%]- — aKjme€?  if tr(e) <0,

where K. = (A + u)/2 is the modulus of compression
for a plane strain configuration; « is an arbitrary coeffi-
cient chosen to be bigger than 1. This breaking of the
symmetry between compression and extension is a key
ingredient not present in previous phase-field approaches
to in-plane fracture [10,11]. In our model, if a material is
simply compressed, having « > 1 will guarantee that it
will not break; also, compression will increase the thresh-
old needed for inducing a fracture through shear. The
parameters values used hereare e, = 1, 7 =5, A = u =
1, and o = 1.5.

We proceed to study this model computationally in a
box of width W and length L. Simulations were per-
formed using a grid spacing of 6x = 0.15 and a time
step of 6t = 0.001. (Decreasing to 6x = 0.075 and 6t =
0.0005 leads to no significant difference in the results.)
The time stepping scheme was the forward Euler method
while the spatial operators were computed using a discre-
tization that conserves the discretized energy of Eq. (1).
(The use of other scheme leads to long term numerical
instabilities.) In our simulations, we used both fixed grids
of different sizes along the x axis and a grid moving with
the fracture tip along the x axis. Boundary conditions for
the fixed grid were as follows: at the y=W (y =0)
boundary, u, was kept equal to A, (0) and on both lateral
edges u, = xA,/L. At the x = L (x = 0) boundary, u,
was kept equal to A, (0) and no flux boundaries were used
for the u, field. In the case of the moving grid, the
boundary conditions at y = W and y = 0 were unchanged
whereas the boundary conditions at the horizontal ends of
the grid were modified. First we introduced an artificial
viscosity in a thin layer at both ends. (This mimics
partially absorbing boundary conditions.) Also, at the
leftmost end the u, field was kept constant between
each displacement of the grid. We checked that those
modifications did not affect the behavior of the crack
when compared to results obtained using a long enough
fixed grid, thereby allowing us to simulate the crack
propagation along an infinite strip along the x axis. The
initial conditions were constructed as follows: a small
initial crack was created by setting ¢ = 0 in a small
region of fixed width and variable length and by letting
the system evolve following a damped version (see later)
of the evolution equation of elasticity (while ¢ was kept
constant) until a stationary state was reached.

We first tested the model for damped dynamics ob-
tained by replacing d,, by d,. For pure mode-I loading, the
fracture began to propagate once the imposed elastic
energy was higher than the fracture energy (see later).
In addition, in this case, the stress intensity factor at the
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tip of a steady crack was found to be constant for various
loading configuration, hence obeying the Irwin criterion
[12] (data not shown). More interestingly, numerical
simulations in the case of pure mode-II loading showed
that the model respects the local symmetry principle: the
fracture propagates in the direction which nullifies the
stress intensity factor for mode II [see Fig. 2 (right)].
Hence this model reproduces well the behavior of a single
crack in the damped regime. Note that this result depends
on our asymmetry parameter «; allowing breakage under
compression leads to a model which does not follow the
local symmetry principle [Fig. 2 (inset in the right
panel)]. The results for different @ ranging from 1 to 2
were similar.

Next, we turn briefly to results obtained in the dynamic
(nondamped) case under pure mode-I loading. As ex-
pected by analogy with the results of [7] for the case of
mode-III loading, the initiation of crack propagation ap-
peared at the Griffith threshold with good accuracy.
Indeed, according to the Griffith criterion, one would
expect a crack to begin to propagate for a value of the y
extension A bigger than A, which is a solution of

W32+ M)VAV—ZZ} =2 [ dg\al1 ~ 2(6)]+ V(a).
)

This formula was derived in [7] and follows from the
asymptotic solution of the model in the region far behind
the crack tip. For the parameter values used here, this
threshold is at 9.5 whereas in our simulations the crack
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FIG. 2. Left: contour plot of the line ¢ = 0.5 taken at
1 time unit (tu.) intervals during the branching of a crack
under mode-I loading with A, = 18 and 8 = 1. The angle of
the two branches at the branching site is approximately 40°,
and the critical speed for which the instability occurs is
approximately 0.5 while the shear speed is 1, which is in
agreement with predictions in [13]. During the evolution of
the system, the lower branch will recede while the upper
branch will propagate and branch irregularly. The simulations
are performed using the undamped model. Right: contour plots
of ¢ = 0.5 taken at 40 t.u. during the propagation of an over-
damped crack in a medium where pure mode-II loading is
applied. The initial crack is straight and oriented along the
x axis. The crack propagates in a direction that nullifies the
mode-II stress intensity factor. Inset: same parameters with
a = 0. One can see that, in this case, the crack branches and
propagates in two directions symmetrical with respect to the
x axis. The second branch propagates in a region where the
material is strongly compressed.
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begins to propagate for A, bigger than 9.7 * 0.1; this 2%
discrepancy is due to discretization and finite width ef-
fects and gives some measure of the accuracy of our
computations. The speed of the stable crack behaved
qualitatively as expected when loading was increased.
When loading was further increased, the dynamic frac-
ture exhibits a branching instability and a secondary
crack begins to propagate (see Fig. 2). This branching
instability is compatible with what has been observed
experimentally in a wide range of materials [14,15].

We now turn to our major interest here, the case of a
dynamic crack propagating under biaxial stress.
Experimental work by Deegan et al. [9] has shown that
for a given imposed strain in the y direction (see Fig. 1),
there is a threshold value of the x strain for which the
crack propagation is no longer straight; instead, the crack
tip position begins to oscillate. In fact, the instability
appears to be supercritical and the tip trajectory is well
approximated by a sinusoidal line with finite wavelength
and amplitude. Recall that in our calculations strains are
applied by moving the rightmost border of the sheet by A,
and by moving the top border by A; hence, if A, = 0, the
system is set to pure mode I. The experimental results
translate into the prediction of a Hopf bifurcation that
should occur as we cross a threshold value of r = WA /L,
with A, being fixed.

The results of our numerical simulations for two sets of
A, u and different values of A, faithfully reproduce the
aforementioned phenomenology. Namely, the fracture tip
trajectory indeed undergoes a Hopf bifurcation when the
x extension is increased over a threshold value that de-
pends on both parameter regime and the vertical exten-
sion. This bifurcation is characterized by the fact that
below threshold, the tip position shows damped oscil-
lations (see Fig. 3) and ends up propagating along a
straight line, whereas above threshold those oscillat-
ions are amplified and the restabilized state corresponds
to the situation where the fracture tip oscillates at a fi-
nite wavelength with a finite amplitude (see Fig. 3). We
checked that this instability was not due to waves re-
flecting at the boundaries that can create periodic mark-
ings called Wallner lines [16]. Indeed, the expected wave-

length of such markings would be A = Wv/cy/1 — v?/c?,
that is about 10 s.u. while the wavelength observed here is
about 300 s.u. This is confirmed by the fact that switching
to quasiabsorbing boundary conditions at the y = W and
y = 0 lines does not affect the oscillations.

When the restabilized state is reached, the trajectory of
the tip is almost indistinguishable from a sinusoidal line,
as in [9]. One can also note that the horizontal tip speed
oscillates with a frequency equal to 2 times the frequency
of the vertical position, so that the maximum of the
horizontal tip speed is reached when the instantaneous
tip velocity is directed along the x axis. In addition, the
tip speed tangent to its trajectory is kept almost constant
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FIG. 3. Fracture tip trajectories for A, =10 and r=
WA,/L = 8.0 during the transient regime (a) and when a
stationary state is reached (b). The steady-state tip trajectory
matches a simple sinusoid. (c) Tip trajectory for A, = 10 and
r = WA,/L = 7.25, exhibiting damped oscillations. In (b) the
mean tip speed is 0.362 and the mean tip speed along the x axis
is 0.354. In (c), the tip speed is 0.347 once straight propagation
has resumed. The transverse and longitudinal speeds of sound
are, respectively, 1 and 1.22. The period of the oscillations in
(b) is about 831 tu. and the corresponding wavelength is
294 s.u.

(up to numerical errors) and for different values of r
(r varying between 7 and 8), we did not find significant
changes in the tip speed (less than a few %). A picture of
this state is presented in Fig. 4.

We now describe the changes in the oscillating resta-
bilized state when the strain along the x axis is increased.
As seen in Fig. 5, the amplitude of the oscillations be-

haves like /A, — A . close to threshold, which is con-
sistent with a supercritical Hopf bifurcation, as
experimentally observed in [9]. The wavelength and pe-
riod of the tip oscillation decreases slightly when A, —
A . is increased; this differs from results in [9] where the
wavelength increases when A, — A, .. This may be due
to nonlinear elasticity effects present in the experiment.

We also performed numerical simulations with biaxial
strain and a = 0. The results obtained did not differ
significantly from that observed for a« = 1.5. This is
somewhat surprising, since the simplest interpretation of
the oscillations observed here suggests that the mecha-
nism is at least partially similar to the one underlying

FIG. 4. Elastic energy landscape (gray scale, dark regions
correspond to high density) during the propagation of an
oscillating crack. The white region corresponds to the broken
region (¢ < 0.5). Parameter values are as in Fig. 3(a). Between
the arches of the sinusoidal line of the crack, the elastic energy
density is lower than in the vicinity of the upper and lower
boundaries of the slice.
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FIG. 5. (a) Square of the amplitude of the oscillations as a

function of r = WA, /L. (b) Frequency w (+) of the oscilla-
tions. The wavelength (not shown) varies like the inverse of w
since the crack speed is not varying much (about 10~3) over the
parameter range presented here.

oscillations of a quasistatic crack propagating in a thermal
gradient [17,18]. In that case, theoretical work has ex-
plained the transition to an oscillating crack using a
(modified) principle of local symmetry [19,20]; changing
the tip direction induces a mode-II component which
causes further deviation from the original line. We have
already shown that this principle does not apply for a
symmetric model for pure mode-II loading. Perhaps the
explicit breaking of the symmetry by the mode-I part of
the driving is enough to suppress the unphysical compres-
sional breaking for the case of @ = 0, and hence this
model still exhibits the Hopf bifurcation. In support of
this, we verified that even in this case, a crack tip with
damped dynamics will obey the principle of local sym-
metry, if in addition to a pure mode-II load one adds a
small mode-I extension. We should note, though, that we
never observe oscillations with damped dynamics, even
when r was set to very close to A, i.e., close to hydro-
static strain. However, increasing 7 (up to 50), i.e., in-
creasing the dissipation at the crack tip, did not affect
significantly either the instability wavelength of the os-
cillating crack or the threshold but did reduce the crack
speed [from 0.362 to 0.05 (7 = 50)]. Also, changes in Ay
(A, = 12,14, with 7 = 20 to avoid branching) did not
affect significantly the wavelength of the oscillating
crack but did change the threshold. Interestingly, the
wavelength scales linearly with W. Hence, it seems that
the saturation of the amplitude is governed by the inter-
action of the tip with the sidewall. Underlying the actual
instability is perhaps the simple fact that an oscillating
crack will alleviate extra elastic energy under biaxial
strain.

In summary, this Letter shows that the extension of the
KKL phase-field model of crack propagation to full vec-
tor elasticity qualitatively reproduces the different insta-
bilities observed when considering the propagation of
cracks. One should note that with an extremely simple
model based on generic physical considerations we were
nonetheless able to reproduce the variety of observed
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patterns. This lends confidence in the entire modeling
approach and suggests that we proceed in two comple-
mentary directions. First, we can continue to investigate
the phenomenology of KKL, specifically looking at the
interaction of different cracks (the phase-field method can
easily deal with intersecting interfaces) and also truly
three-dimensional effects [21]. At the same time, it is
time to begin understanding how to combine this method
with microscopic interaction data about specific materials
so as to enable the building of more quantitatively reliable
models of dynamic fracture.
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