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Does the Interaction Potential Determine Both the Fragility of a Liquid and the Vibrational
Properties of Its Glassy State?
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By performing molecular dynamics simulations of binary Lennard-Jones systems with three
different potentials, we show that the increase of anharmonicity and capacity for intermolecular
coupling of the potential is the cause of (i) the increase of kinetic fragility and nonexponentiality in the
liquid state, and (ii) the T,-scaled temperature dependence of the nonergodicity parameter determined
by the vibrations at low temperatures in the glassy state. Naturally, these parameters correlate with each
other, as observed experimentally by T. Scopigno et al. [Science 302, 849 (2003)].
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The structural relaxation time, 7, of all glass-forming
liquids increases on cooling. It becomes so long at some
temperature 7, that equilibrium cannot be maintained
and the liquid is transformed into a glass. T, is defined
as the temperature at which 7 reaches some arbitrarily
chosen long time, say, 102 s. Although this behavior is
shared by glass formers of diverse chemical and physical
structures, the scaled temperature dependence of 7 in the
liquid state can differ greatly from one liquid to another
in the degree of departure from the Arrhenius scaled
temperature dependence [1,2]. The departure can be char-
acterized by the rapidity of the change of log(7) with
T,/T at T,/T = 1, which is given by the steepness index
or the fragility m defined by [3]

dlog(7)
m=——>- :
d(T,/T) | 1,/7=1

The values of m of glass formers of all kinds vary over a
large range, from the least value of about 17 for strong
glass formers (such as silica) having nearly Arrhenius
scaled temperature dependence of 7, to values as high
as about 200 found for some glass formers called fragile.
Naturally, such large variations observed in m beg the
question of its microscopic origin. Several attempts have
been made in the past to correlate m with other dynamic
or thermodynamic properties, with the hope that the
correlations will lead to the factor or factors that deter-
mine m. Examples include (i) the correlation of m with
n=(1— B)atT = T,, where (3 is the stretched exponent
in the Kohlrausch function, exp[—(¢/7)?], used to fit the
time dependence of the correlation functions such as the
intermediate scattering functions; (ii) the correlation of m
or (1 — B) with the mean-square displacement (u>) ob-
tained [4] from quasielastic neutron scattering measure-
ment of the Debye-Waller factor exp[ —(u?)Q?/3] [glass
former with larger m or (1 — B3) has a larger (u?) at the
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same value of T/ T, and rises more rapidly as a function of
T/T,, below T, as well as near and across T, in the liquid
states [4]]; (iii) the correlation between m and the slope of
the change of the configurational entropy, S., with T/T,
at T, [5]; (iv) the correlation of m with the statistics of
potential energy minima of the energy landscape [6,7];
and (v) the correlation of m with the temperature depen-
dence of the shear modulus of the liquid [8]. Perhaps the
most intriguing of all correlations is (vi) between m and
the vibrational properties of the glass at temperatures well
below T, found recently by Scopigno et al. [9]. The non-
ergodicity parameter, f(Q,T) at T < T,, is determined
by vibrations. From inelastic x-ray scattering data, the
temperature dependence of f(Q — 0, T) is well described
by [1 + a(T/T,)]"". Scopigno showed that m and « are
proportional for many glass formers. Apparently, this last
correlation (vi) seems to be related to (ii) for (u*(T/ T,))
from neutron scattering at temperatures well below T,.
In any glass former, it is the interaction potential, V(r),
that determines ultimately all dynamic, thermodynamic,
and vibrational properties at all temperatures both below
and above T,. Changes in any of the quantities, m, n,
<u2(T/Tg)>, a, S., free volume » [10], and the degree of
dynamic heterogeneity, from one glass former to another,
originate from the change in V(r). Thus, correlations
found between these quantities are clues for finding out
which aspects of V(r) determine them and give rise to the
correlations between them. One would like to examine
the interaction potentials in real glass formers. However,
in such materials, the different kinds of chemical bonding
and the different sizes of the basic structural unit make
the comparisons ambiguous. For this reason we consider
the binary Lennard-Jones (LJ) particles with different
choices of interaction potentials V(r) between the parti-
cles, and perform molecular dynamics (MD) simulations
on them to obtain m, n, «, and (uZ(T/Tg)). Correlations
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are found between all these quantities, thus reproducing
the empirical findings from real glass formers. Since the
number of particles as well as their density (p = 1.2) are
the same, the changes of these quantities are predomi-
nantly due to the change in V(r). The latter is well
controlled, and therefore we identify anharmonicity and
the capacity of intermolecular coupling of V(r) to be
responsible for enhancement of m, n, a, and (u*(T/T,)),
and hence their correlations.

MD simulations were performed on binary LJ particles
systems with three different interaction potentials by the
MD package DLPOLY [11]. Technical details of the MD
simulations are given in [12]. We have performed from
10° to 6 X 107 time steps, depending on temperature. We
have investigated 12 temperatures in the range of [0.675—
5], [0.416-5], and [0.26-2] for models I, II, and III,
respectively. All models are composed of 1500 uncharged
particles (1200 species A and 300 species B). The gener-
alized (g, p) LI potentials have the form V(r) = (ﬁ—"p) X

[p(®)7 — g(*2)?]. The parameters r, and E, represent the
position of the minimum of the well and its depth, re-
spectively. The reduced LJ units [13] are used. The choice
of ¢ =12 and p = 6 corresponds to the standard LJ
potential used by Kob and Andersen (KA) [14] and by
others for extensive studies by simulation. For the purpose
of investigating the change of dynamics with controlled
change of V(r), we developed two other models by chang-
ing only the exponents, g and p, of the LJ potential for the
A-A interactions. They are (¢ =8,p=25) and (¢ =
12, p = 11) and are shown together with the (12,6) LJ
potential in Fig. 1. The well depth and the position of the
minimum of V(r) are unchanged, and we have kept the
standard (12,6) LJ potentials of the KA model for the A-B
and B-B interactions in order to retain as much as possible
the remarkable ability of the KA model to form a glass
upon cooling. The (12,11) LJ potential is more harmonic
than the classical (12,6) LJ potential, while the (8,5) LJ
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FIG. 1. Potential V(r) governing the A-A interaction. The
dashed curve is the (12,11) LJ potential for model I, the solid
curve is the (12,6) LJ potential for model II, and the dotted
curve is the (8,5) LJ potential for model IIL. Inset: radial
distribution function g(r) of species A at T = 1.02T,; for the
three models (see below for the definition of 7).
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potential is a flat well and exceedingly anharmonic.
Whenceforth the (12,11), (12,6), and (8,5) potentials are
referred to as models I, II, and III, respectively, remind-
ing us that anharmonicity is increasing in this order. The
V(r) potentials are not truncated and shifted according to
[14]. This modification does not alter the behavior of the
models.

The structure has been briefly studied by the radial A-A
distribution functions g(r) of the (12,11) and (8,5) mod-
els, which have been calculated and found very similar to
that of the (12,6) model in the temperature ranges inves-
tigated (see inset of Fig. 1). Respectively for models I, II,
and [IT at T = 0.700, 0.440, and 0.268, the position of the
first peak of g(r) is at 1.072, 1.066, and 1.057 and its width
at half the maximum is 0.129, 0.147, and 0.191. The g(r)
of the three models in the supercooled state is similar to
that in the liquid regime, ensuring that the structures have
disorder in the middle and long range.

Dynamics have been investigated by computing the
self- F¢(Q, r) and the total- F(Q, t) intermediate scatter-
ing functions of particles A at Qy = 27/r, close to the
maximum of the collective static structure factor S(Q),
for the three models. At high temperatures, Fg(Qo, t)
decays linear exponentially to zero with a characteristic
time of about 0.45 close to crossover time 7. = 1 to 2 ps
used as a fundamental time in the coupling model [15,16].
When temperature is lowered, the dynamics slows down
dramatically and a two-step process appears. This behav-
ior is well described by the mode coupling theory [17].
For the three models, it is indeed possible to draw a
master curve with Fg(Q,, t) at each of these lower tem-
peratures in the reduced unit /74, where 7, is the relaxa-
tion time. From the master curves, we find an independent
temperature 3, the stretched exponent, equal to 0.84, 0.81,
and 0.76 with error bars of 0.1 for models I, II, and III,
respectively. Because of the relatively large error bars, we
have determined the nonergodicity parameter (height of
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FIG. 2. Self-intermediate scattering function Fg(Qy, 1) vs
scaled time t/74. Dashed, solid, and dotted lines are for
models I, II, and III, respectively. For all three models,
T4(T,) = 46435.8. The inset shows the stretched exponent
B = (1 — n) as a function of the scaled reciprocal temperature
T,;/T for the three models: (®) model 1, (@) model II, and
(M) model III. For definitions of 7, and 3, see text.
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the plateau), f5(Qp, T), the relaxation time, 74, and the
stretched exponent, B, from the fit to the second step
decay of individual Fg(Qq, f) (rather than the master
curves) by fs(Qo, T) exp[—(t/74)?]. Shown in Fig. 2 are
Fg(Qq, 1) vs t/74 of all three models at the reference
temperature T, defined by 7,(T,s) = 46435.8, a very
long time in our simulations. The values of T, are 0.688,
0.431, and 0.263 for models I, II, and III, respectively.

Shown in Fig. 2 (inset) are 8 of the three models as a
function of T.s/T. At any T.¢/T, (1 — B) is least for
model I and largest for model IIl. At T =T, B =
0.69, 0.65, and 0.60, respectively, for models I, II, and
IIL Thus (1 — B), which provides a measure of the inter-
molecular coupling according to [15], increases with
anharmonicity. In Fig. 3, log(74) is plotted against
T,s/T and the data of the three models show systematic
change. It can be seen that the slope, fragility index
m(7y) = [dlog(t4)]/[d(T,s/T)] as (Trr/T) — 1, in-
creases monotonically in the order of models I, II, and
IIL The values of m(7,) determined from this latter
relation are 15.07, 18.57, and 26.58 for models I, II, and
IIL Alternatively, the estimated values of m(7,) based on
the Sastry method [7] are 0.195, 0.241, and 0.405 for
models I, II, and III, respectively. Hence, m(7,) increases
with anharmonicity. The fragility index found in the
present study for model II is in good agreement with
the value determined in an earlier work on the same
model [7]. The diffusion coefficient, D,, of particles A
was calculated from the mean-square displacement
(u?(t)) at long times when (u’(f)) assumes the linear ¢
dependence. The evolution of 1/D, is comparable to 74,
leading to another definition of the steepness or fragility
index, m(D,) = [d1log(1/D4)]/[d(T,e/T)] as (Tyet/T) —
1. Again, m(D,) increases monotonically in the order of
models I, II, and III, or with anharmonicity.

So far we are concerned for dynamic quantities and
their correlations for T > T, as analogues of them in the
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FIG. 3. The relaxation times 7, obtained from Fg(Qy, f) for
the three models as a function of T\ /T, where T, is defined as
the temperature at which 7, reaches 46 435.8: () model I, (@)
model II, and (M) model IIL Ty is the analogue of T, for
simulations when the dynamics of the system slows down to
more than 10 ns.
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liquid state of real glass formers. Next we examine the
vibrational properties of the three models at temperatures
lower and much lower than T, by first quenching the
liquid and then allowing vibrational degrees of freedom
to relax. At low temperatures, relaxation of any kind is
absent in the simulation time window, and the nonergo-
dicity parameter f(Q, T) determined from F(Q, 1) is con-
tributed entirely from vibrations. As performed in [9], we
have followed the behavior of f(Q — 0,T) = fo(T),
which has been obtained by a Q-quadratic extrapolation
of f(Q, T) for the lowest temperatures. The results of the
three models are shown by a plot of f(T)~! vs T/T, in
Fig. 4.

In all three cases, the dependence of fo(T) ™! on T/T
is approximately linear, and f,(7)~! has the extrapolated
value of unity at the origin. The dependence of f,(T) from
simulation on T/T, is governed by the parameter, a,
through the expression

o) =1+ an, @

ref

just like a similar expression used to represent the depen-
dence of f,(T) on T/T, of real glass formers obtained by
inelastic x-ray scattering [9]. We see from Fig. 4 that the
increase of fo(T)™' with T/T, is fastest for model III
and slowest for model 1. Equivalently stated, the slope «
is largest for model III and smallest for model L «
increases with anharmonicity of the potential, such as
m(74) or m(D,), and (1 — B), as seen before (Figs. 1-3).
Hence the interacting potential is the origin of the corre-
lation of @ with m(7,) or m(D,), and (1 — B) in our
simulation, suggesting the same holds for real glass for-
mers. Moreover, in the inset of Fig. 4, we observe that
m(7,) and a are proportional together, as shown in [9].
Presumably there is no disagreement that the interac-
tion potential is pivotal in determining all dynamic,
thermodynamic, and vibrational properties of glass for-
mers at all temperatures. With all these experimentally
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FIG. 4. f(Q—0,T)"' = fo(T)"! vs T/T,s for the three
models: (@) model I, (@) model II, and (M) model IIL
fo(T)~! is almost linear relative to T/T,; with a slope noted
a. The inset shows the correlation of the fragility m with «
from the results of the three models.
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accessible properties originating from the interaction po-
tential, it is not surprising to find correlations or anticor-
relations between them. Making this point is one of the
motivations of the work in demonstrating that the various
correlations between a, m, (1 — B), and (u*(T/T,)) ob-
served in real glass formers are reproduced by simula-
tions as the analogues of correlations between a, m(7,),
m(D,), and (1 — B) by varying the interaction potential
V(r). The results confer a bonus in identifying which
feature of the interaction potential is responsible for
enhancement of «, m(7,), m(D,), and (1 — B).
Certainly the anharmonicity of V(r) increases when
going from model I to models II and III, but one also
can observe from Fig. 1 that the long range interaction
becomes more pronounced. The latter trend means that
neighboring LJ particles are more coupled in their mo-
tions. The increase in interparticle coupling from model I
to model III is consistent with the position of the first
peak of radial distribution functions g(r) (1.072, 1.066,
and 1.057 for models I, II, and III, respectively) and with
its width at half the maximum (0.129, 0.147, and 0.191 for
models I, I, and III). This insight from simulation, when
transferred to real glass formers, suggests that the ca-
pacity for intermolecular coupling and the anharmonicity
of the interaction potential determine the dynamic, ther-
modynamic, and vibrational properties of glass formers
above as well as below T,. Although the thermodynamic
variables, configurational entropy S., and free volume v
are determined by V(r), they reenter into the dynamics by
their influence on molecular mobility. Thus two factors
govern dynamics, the capacity for intermolecular cou-
pling directly from V(r), and S, and » that come indi-
rectly through V(r). On supercooling a liquid, S, and v
change, and since the kinetic fragility m is the slope of
T,-scaled temperature variation of 7, it is not surprising
that m is correlated with the slope of the corresponding
change of S, i.e., the thermodynamic fragility. The ca-
pacity for intermolecular coupling of V(r) is solely re-
sponsible for the shape of the dispersion or the
nonexponentiality parameter (1 — 8), and it also deter-
mines 7 in conjunction with S, and ». The results of our
simulation with the three potentials support this view.
Increasing the density of the particles of the binary LIJ
system with the fixed (12,6) potential effectively forces
the particles to be closer to each other and thereby in-
creases intermolecular coupling. The simulation per-
formed in this manner [7] showing that m increases
with density can be reinterpreted as due to the increase
of intermolecular coupling. Intermolecular coupling
manifests itself in the dynamic properties in various
ways, such as the Q~%# dependence of 7 [4]. All these
provide evidence for intermolecular coupling that must be
taken into consideration in conjunction with S, and v for
explaining all observed experimental facts in the liquid
state. At low temperatures and deep in the glassy state, S,
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and v having constant values cannot influence the tem-
perature dependence of the vibrational properties charac-
terized by a. Hence, « is controlled by the anharmonicity
of V(r), as demonstrated by the simulations.

In summary, we demonstrate by using three different
interparticle potentials of binary LJ systems that the
capacity for intermolecular coupling and the anharmo-
nicity of the potential are responsible for the correlations
between various dynamic, thermodynamic, and vibra-
tional properties of glass formers. The increase of the
capacity for intermolecular coupling and anharmonicity
has the effects of increasing the kinetic fragility, m, and
the nonexponentiality parameter, (1 — ), in the liquid
state, and of increasing in the glassy state the parameter «
that characterizes the T,-scaled temperature dependence
of the nonergodicity parameter determined by vibrations
at low temperatures. The correlations between m, (1 — ),
«, and other quantities follow as consequences, and their
observations by experiments have now been explained.
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