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Nonlinear Evolution of the Lower-Hybrid Drift Instability in a Current Sheet
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The lower-hybrid drift instability is simulated in an ion-scale current sheet using a fully kinetic
approach with values of the ion to electron mass ratio up to mi=me � 1836. Although the instability is
localized on the edge of the layer, the nonlinear development increases the electron flow velocity in the
central region resulting in a strong bifurcation of the current density and significant anisotropic heating
of the electrons. This dramatically enhances the collisionless tearing mode and may lead to the rapid
onset of magnetic reconnection for current sheets near the critical scale.
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Current sheets with characteristic thickness of the
order of a thermal ion gyroradius �i are routinely ob-
served in Earth’s magnetosphere [1,2] and within labo-
ratory experiments designed to examine the physics of
magnetic reconnection [3], a topic with widespread ap-
plication to space, astrophysical, and laboratory plasmas.
Although current sheets are unstable to a variety of
plasma instabilities including collisionless tearing [4]
and the lower-hybrid drift instability [5], the relative
importance of these instabilities to the onset and develop-
ment of large scale magnetic reconnection remains
controversial.

The lower-hybrid drift instability (LHDI) is driven by
the diamagnetic current in the presence of inhomogenei-
ties in the density and magnetic field [6]. The LHDI has
been considered extensively as a possible candidate to
modify the reconnection physics through anomalous re-
sistivity generated by wave particle interactions [5,7,8].
Unfortunately, theory predicts the fastest growing modes
with a wavelength on the electron gyroscale ky�e � 1 are
localized on the edge of the layer [5], while enhanced
fluctuations are required in the central region to produce
significant anomalous resistivity. This conclusion is sup-
ported by observations at the magnetopause [9], in the
magnetotail [10], and by laboratory experiments [11].

Based on this evidence, some researchers have con-
cluded the LHDI does not play an important role in
current sheet dynamics. However, new results from both
theory and simulation are beginning to challenge this
conclusion. In a number of simulations, a strong enhance-
ment of the central current density associated with the
LHDI is observed [12–16] and it has been suggested this
effect gives rise to the rapid onset of reconnection [14,15].
Most of these simulations were performed with artificial
ion to electron mass ratios mi=me � 100–400 and very
thin layers �i=L � 1:7–2:2, where L is the half thickness
of the layer. Although the simulations in Ref. [13] con-
sidered thicker layers at realistic mass ratio, the focus was
on long wavelength effects, and the spatial resolution was
insufficient to resolve the full LHDI spectrum.
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The very thin layers considered in most of the simu-
lations are comparable in thickness to laboratory recon-
nection experiments [3,17] but are considerably thinner
than observed in the magnetotail prior to onset. In this
regime, kinetic simulations indicate significant penetra-
tion of electromagnetic fluctuations into the central re-
gion [7,8,12]. An explanation for these waves was
recently proposed based on a new approach to the linear
Vlasov stability [18], which predicts the longer wave-
length LHDI with ky

����������
�i�e

p
� 1 can penetrate into the

central region even though the fastest growing modes
with ky�e � 1 are confined to the edge. The required
thickness for this penetration [18] is approximately
�i=L * 1:5.

In the magnetotail, the observed thickness of the cur-
rent sheet [1] is larger (�i=L & 1) and it appears the LHDI
is well localized on the edge. In this work, the nonlinear
evolution of the LHDI is examined for this regime using a
two-dimensional kinetic approach with the physical value
of the mass ratio for a hydrogen plasma mi=me � 1836
and fully resolving all relevant spatial and temporal
scales. The nonlinear development leads to a rich variety
of interesting new physics including a strong bifurcation
of the current density and significant anisotropic heating
of the electron distribution in the central region.
Furthermore, a simple physics model is proposed which
can explain both of these features. These new results may
have direct relevance in understanding bifurcated current
sheets recently observed in the magnetotail [19,20]. In
addition, these modifications greatly enhance the colli-
sionless tearing mode and may play a crucial role in
determining the onset of reconnection [21].

The initial configuration is a Harris sheet [22] with
magnetic field Bx � Bo tanh�z=L� and plasma current
Jy � Josech2�z=L�. The initial distributions are drifting
Maxwellians with thermal velocity vths � �2Ts=ms�

1=2

and uniform drift Us � 2cTs=�qsBoL� where Ts is the
temperature, ms is the mass, qs is the charge, n�z� �
nosech2�z=L� is the density profile, and s � i; e for ions
and electrons. A uniform background distribution at rest
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FIG. 1 (color). Simulation results for mi=me � 1836 at time
t�ci � 7 showing (a) current density Jy, (b) electron fluid
velocity Vey, (c) electron anisotropy Te?=Tek, and (d) electro-
static potential %. Contours of each quantity are shown on the
left, while the y-average is shown on the right (red) along with
the initial profile (black). The blue line in (b) corresponds to the
y-average of the prediction for Vey in Eq. (2), while the blue
line in (c) corresponds to the anisotropy estimate in Eq. (3).
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is also included, since the stability properties are sensitive
to this feature [18]. The equilibrium parameters are �i=
L�1, Ti=Te�5, !pe=�ce�4, and nb=no�0:02, where
�i�vthi=�ci is an ion gyroradius, �cs�eBo=�msc�
is the gyrofrequency computed from the asymptotic field
Bo, !pe � �4�noe

2=me�
1=2 is the plasma frequency cal-

culated from the peak density no, and nb is the back-
ground density with temperature Tb � Te. These pa-
rameters are roughly appropriate for conditions observed
in the magnetotail [1,23]. Simulations were performed for
two different mass ratios: mi=me � 1836 to simulate
realistic conditions over a short duration and mi=me �
512 to examine the evolution over a longer period.

The simulations are based on an algorithm in which
the fields are advanced using the scalar and vector po-
tentials [24,25]. Working in the Coulomb gauge, the
scalar potential is computed directly from Poisson’s
equation, while the vector potential is advanced in
time using a semi-implicit method, which permits the
time step to exceed the Courant limit [25]. For waves
with phase velocity much less than the speed of light,
this approach is very accurate and comparisons against a
fully explicit method [24] have revealed no significant
differences. The boundary conditions for the particles
and fields are periodic in the y direction. Conducting
boundary conditions are imposed for the fields at the z
boundaries and particles are reflected. In both simula-
tions, the box size is 12L� 12L and the time step is
�t�ce � 0:1, which fully resolves the electron motion
but is approximately 6 times faster than the Courant
limit. For mi=me � 1836, the spatial grid is 5120�
5120 with 6� 109 particles while for mi=me � 512, the
spatial grid is 2560� 2560 with 1:6� 109 particles. This
corresponds to a cell size � � 1:3�D where �D is a
Debye length.

At the physical mass ratio mi=me � 1836, the fastest
growing mode from a linear Vlasov calculation [18] has
wavelength ky�e � 0:5 with real frequency !=�ci �

27:9, growth rate �=�ci � 5:7, and is localized in the
region 0:7 & jz=Lj & 2. These predictions are in excel-
lent agreement with the simulation results and fluctua-
tions are well confined to the edge. Since the LHDI is
driven by the diamagnetic drifts, one would expect a
reduction of the current density in the region of LHDI
activity and this expectation is confirmed in Fig. 1(a). The
surprising result is the pronounced off-axis current fila-
ments near z=L � 0:2. The modified current profile is
largely due to changes in the electron fluid velocity Vey

as shown in Fig. 1(b) while changes in the ion fluid
velocity and density are relatively minor. In addition,
the electrons are heated in the direction perpendicular
to the magnetic field resulting in a non-Maxwellian dis-
tribution in the central region, which may be roughly
characterized in terms of the electron anisotropy
Te?=Tek as shown in Fig. 1(c). At first glance, these results
are perplexing since there is no wave activity in the region
105004-2
jz=Lj & 0:7. Nevertheless, a simple physics model is suf-
ficient to explain all of these results.

The constants of motion for a charged particle moving
in the equilibrium field are " � ms�v2

z � v2
y�=2, vx, and

py � msvy � qsAy=c where Ay is the vector potential
Ay � 
BoL ln�cosh�z=L�� for the Harris field. Particles
with " > p2

y=2ms traverse both sides of the current layer
and are referred to as crossing trajectories while particles
with " < p2

y=2ms are confined to one side of the layer and
are referred to as noncrossing. The boundary between
crossing and noncrossing regions of phase space is

vy
vths

�
$
2



1

2$

�
vz
vths

�
2
; (1)

where $ � �L=�s� ln�cosh�z=L��. An example cross sec-
tion of phase space is illustrated in Fig. 2 for the region of
the sheet with strong LHDI fluctuations. The parabolic
curves correspond to Eq. (1) at the spatial positions z=L �
1; 2 while the concentric circles correspond to the
105004-2
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FIG. 2. Cross section of phase space (top) in the vz 
 vy
plane, illustrating a drifting Maxwellian ion distribution and
the phase space boundary in Eq. (1) for two different spatial
positions within the layer. The shaded region in the upper figure
corresponds to the approximate phase velocity of the waves
!=ky � Ui=2, which are in the proper region to resonantly
scatter crossing ions into the noncrossing region of phase space.
This scattering process and the resulting charge accumulation
is illustrated in the lower figure.
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Maxwellian ion distribution. The phase space boundary is
the only feature which varies with position in Fig. 2 since
both the ion drift Ui and temperature Ti are spatially
uniform. The approximate phase velocity for cold elec-
trons !=ky � Ui=2 is shown in the shaded region. The
essential point is the phase velocity is in the proper region
to permit a resonant scattering of ions from the crossing
region into the noncrossing region as illustrated at the
bottom of Fig. 2. Although the reverse scattering process
is also possible, the slope of the distribution in the vicin-
ity of the resonance favors the process shown in Fig. 2.
This type of scattering can only occur if the spatial extent
of the crossing ion orbits &i �

�����������
2�iL

p
overlaps with the

spatial localization of the mode. It has been suggested
that this process may lead to the creation of significant
shear in the ion velocity [26]. In the present context, the
resonant scattering leads to a loss of positive charge in the
center in conjunction with a gain in the edge region, and
therefore gives rise to an electrostatic potential structure
across the layer as shown in Fig. 1(d).

To understand the increase in the electron flow velocity,
consider the electron momentum equation within the
fluid approximation. Neglecting the inertia term and us-
ing the equilibrium distribution to evaluate the pressure
tensor, the resulting electron flow velocity is

Vey �
Ue

1� �nb=no�cosh
2�z=L�



c
Bx

@%
@z

: (2)

The first term is the equilibrium flow while the second
term is the E� B drift induced by the electrostatic
potential. At early times within the simulation, the elec-
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tron velocity is in excellent agreement with Eq. (2) as
shown in Fig. 1(b), indicating the acceleration is a direct
result of the electrostatic potential. As the simulation
proceeds, the electron pressure is strongly modified and
the simple relationship in Eq. (2) is no longer accurate.
The ion flow is also modified, but to a much smaller
degree due to the large inertia. The essential physics of
this electron acceleration process is very different from
recent results [14,15] in which an inductive electric field
plays the dominant role while the electrostatic field is
negligible [14]. In addition, these low mass ratio simula-
tions do not observe the strong current bifurcation.
Although our simulations confirm the bifurcated current
structure is diminished at lower mass ratio, the electro-
static potential continues to play an essential role in the
electron acceleration.

The anisotropic electron heating in the outer region
jz=Lj * 0:7 is a direct consequence of the LHDI due to
the electron rB drift resonance [6]. In the central region
there are no fluctuations and this mechanism is not rele-
vant. A different approach to explain the heating is to
examine the adiabatic invariants for the various electron
orbits. For a system with periodic motion, the action
integral taken over a period

H
pdq is a constant of the

motion, where p and q are the generalized momentum
and coordinate describing the periodic motion. When a
change is imposed on the system so that the motion is no
longer exactly periodic, the integral

H
pdq is an adiabatic

invariant provided that the change is slow in comparison
to the period of motion. For the case of noncrossing
electrons with helical trajectories, the well-known mag-
netic moment ) � mv2

?=�2Bx� is the relevant adiabatic
invariant. This implies the perpendicular temperature is
simply related to the local magnetic field

Te?�z; t�
Te?�z; t � 0�

�
Bx�z; t�

Bx�z; t � 0�
: (3)

For the region 0:3 & jz=Lj & 0:5 where the electron or-
bits are helical, this expression provides a good estimate
of the perpendicular heating as shown by the blue line in
Fig. 1(c). In the central region jz=Lj< 0:2, the electron
trajectories undergo a variety of complicated crossing or-
bits and ) is no longer the relevant invariant. Approaches
for constructing adiabatic invariants in regions of strong
gradients [27] will be examined in future work.

These results demonstrate the essential physics of the
nonlinear deformation at early time for realistic mass
ratio. This process leads to a significant increase in the
electron velocity in the range jz=Lj & 0:5 and since the
LHDI is driven by the relative drift between electrons and
ions, one would expect the spatial region of wave activity
to move inward. This in turn would lead to more ion
scattering and further enhancements to the electrostatic
potential, current bifurcation, and electron anisotropy.
Unfortunately, to confirm this scenario at realistic mass
ratio is prohibitively expensive. However, longer simula-
105004-3
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FIG. 3 (color). Late time evolution for mi=me � 512 at
t�ci � 29 showing (a) current density Jy and (b) electron
anisotropy Te?=Tek. The y-averaged profiles (red) and initial
current density (black) are shown on the right.
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tions performed with the reduced mass ratio mi=me �
512 confirm this hypothesis. As shown in Fig. 3 at time
t�ci � 29, the peak current density increases by nearly
70% while the electron anisotropy reaches Te?=Tek �
1:35 in the central region. At earlier time t�ci � 7, the
anisotropy in the central region Te?=Tek � 1:12 is only
slightly larger than the mi=me � 1836 result in Fig. 1(c).
These relatively small changes to the electron distribution
can be difficult to compute accurately in explicit particle-
in-cell simulation due to the issue of numerical elec-
tron heating. To check the sensitivity, the mi=me � 512
simulation was repeated with 3 times as many particles
(5� 109) and a smaller time step �t�ce � 0:075. The
resulting electron anisotropy at time t�ci � 7 is only
slightly smaller (Te?=Tek � 1:09) indicating numerical
heating is relatively minor.

In summary, the LHDI has been simulated for the first
time at physically realistic mass ratio using a fully kinetic
approach, which resolves all relevant scales. For the
initial sheet thickness �i=L � 1, the modes are localized
on the edge of the layer in agreement with linear theory.
Nevertheless, the nonlinear evolution gives rise to a reso-
nant scattering of crossing ions into the noncrossing
region of phase space. This in turn produces an electro-
static potential structure across the sheet leading to a
strong bifurcation of the current density and perpendicu-
lar electron heating. The collisionless tearing mode is
driven by the gradient of the current density [4], but is
also very sensitive to the electron anisotropy [28,29].
Thus the nonlinear development of the LHDI can dra-
matically increase the growth rate of tearing without
invoking anomalous resistivity. For the mi=me � 1836
case in this Letter, the maximum tearing growth rate
with isotropic electrons is �=�ci � 0:035 at kxL �
0:45, while for Te?=Tek � 1:1 this increases to �=�ci �
2:2 with kxL � 4. Simulations indicate the rapid growth
and coalescence of these small scale tearing islands can
105004-4
result in the onset of large scale reconnection [21]. This
mechanism is activated when the current layer approaches
a critical thickness �i=L � 0:5 where the crossing ion
trajectories extend into the spatial region of LHDI
activity.
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