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Resistive Wall Mode in Collisionless Quasistationary Plasmas
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The stability analysis of the n � 1 resistive wall mode is carried out for a simplified model of
collisionless tokamak plasma. It is found that the trapped particle compressibility and the resonance
between the mode and the precession drift frequency lead to a significant improvement of the beta
stability limits. It is shown that, within the frame of the simplified model, the resistive wall mode can
be fully suppressed and the plasma can be stable up to the wall beta limits for a slow plasma rotation.
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The resistive wall mode (RWM) is a macroscopic in-
stability of tokamak plasmas that limits the maximum
achievable beta defined as the ratio of the plasma pres-
sure to the magnetic field pressure (� � 2�0p=B

2). The
RWM is driven by the finite resistivity of the metal ves-
sel (i.e., wall) surrounding the plasma column and by
the plasma pressure when the beta exceeds a critical
value. Such a critical value (�1) corresponds to the beta
limits in the absence of the wall and is commonly given in
terms of the so-called normalized � defined as �N �
��%�a�m�B�T�=I�MA�. According to standard magneto-
hydrodynamic theory, the RWM is unstable when �N >
�1
N � 2–3, and its growth rate is inversely proportional

to the resistive wall magnetic diffusion time �w. For an
ideal superconducting wall, the RWM is stable and the
beta limits are set by the ideal external kink that be-
comes unstable when the normalized beta exceeds a
higher critical value (�bN) which depends on the wall
radius b. However, since the wall resistivity is finite, the
RWM prevents the plasma from reaching the higher betas
of the wall-stabilized regime. Since the fusion power
density increases rapidly with the plasma beta, it is ex-
tremely beneficial for a fusion reactor and for future
burning plasma tokamak experiments to be able to op-
erate in the wall-stabilized regime �bN > �N > �1

N .
Several experiments on the DIII-D tokamak and the
National Spherical Torus Experiment (NSTX) have in-
dicated that the RWM can be fully suppressed in fast
rotating plasmas [1–3]. The fast toroidal rotation is in-
duced by neutral beam injection and its magnitude
is a significant fraction of the sound speed. Several au-
thors have theoretically shown that a combination of fi-
nite plasma dissipation and fast plasma rotation leads to
the suppression of the RWM [4–7]. However, neutral
beams in large reactor scale plasmas such as ITER’s
(International Thermonuclear Experimental Reactor)
may not be powerful enough to induce a fast toroidal
rotation. For this reason, several researchers are currently
developing active feedback stabilization schemes which
may mitigate the growth of the RWM in ITER even in the
absence of rotational stabilization [8–10]. However,
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ITER’s feedback coils are external to the first wall and
vacuum vessel, and are not likely to fully suppress the
RWM [10]. Therefore, it would benefit ITER’s high-�
operation if the wall mode could be stabilized by passive
physical effects such as those presented here.

In this Letter, we carry out the stability analysis of the
RWM for a simplified model [11] of a large aspect ratio,
toroidal, collisionless plasma and show that the RWM
may be fully suppressed by the kinetic effects related to
the thermal trapped particles in quasistationary plasmas
where the rotation frequency is less than the ion diamag-
netic drift frequency (j
rotj<!i

	p). The trapped parti-
cles contribute to the RWM dispersion relation through
resonant and nonresonant contributions. The relevant
resonant interaction occurs between the RWM and the
precession drift frequency of the trapped particle banana
orbits. The precession drift frequency of ions or electrons
has two components,

!i;e
D � !E 
!i;e

B ;

where !E � �d�=d� represents the E� B drift fre-
quency (here � is the electrostatic potential and � the
poloidal magnetic flux) and !B represents the magnetic
drift frequency. For a large aspect ratio tokamak, the
magnetic drift frequency can be written in the following
form:

!B 
 �!Bv̂
2H�u�; �!B �

qv2
th


cRr
; (1)

H�u� � �2s
 1�
E�u�
K�u�


 2s�u� 1� �
1

2
; (2)

where q is the safety factor, vth the thermal speed, v̂ �
v=vth, 
c the cyclotron frequency, R the plasma major
radius, r the poloidal radial location, s the magnetic shear,
andK and E the complete elliptic integrals of the first and
the second kinds. The variable u is defined through u �
1 
 �R=r��1 � �� with � � �B=" being the pitch angle.
Finite beta corrections to !B are neglected because they
are typically small in a large aspect ratio torus with a
circular cross section. Those corrections may become
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FIG. 1. RWM growth rate behavior (solid lines in small plots)
in different regions of the x-y plane (large plot). The dashed
curve is the ideal kink growth rate.
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important in realistic high-� tokamak geometry; how-
ever, they do not alter the qualitative conclusions of this
Letter. Since the RWM is a very low frequency mode with
a growth rate of the order of the inverse magnetic diffu-
sion wall time (!� ��1

w � f!B;!Eg), a resonant inter-
action between the mode and the precession drift
frequency occurs when !D �! 
 !D 
 0. Depending
on the direction of the electric field (i.e., the sign of !E),
the resonance can occur with the ions if !E < 0 or with
the electrons if !E > 0. Neglecting the RWM frequency
with respect to !B seems appropriate for an ITER-like
plasma with a major radius R ’ 6 m, minor radius a ’
2 m, toroidal field B ’ 5 T, average electron or ion tem-
perature �Ti;e ’ 10 keV, and density N ’ 1020 m�3. The
plasma is surrounded by a close-fitting resistive wall with
wall time �w ’ 0:2 s [10]. The magnitude of the RWM
growth rate varies with � from a few ��1

w � 10 s�1 to
tens of ��1

w � 102 s�1 near the ideal wall beta limits
before the RWM turns into the ideal kink. Since �!B �
103 s�1 for an ITER-like plasma, then it is appropriate to
neglect !� !B as long as beta is not too close to the
wall limits. A critical assumption used here is the one of
collisionless plasma species requiring !i;e

B > "i;eeff where
"eff � "=#. For ITER-like parameters, such a condition is
satisfied for ion temperatures above �5 keV and electron
temperatures above �35 keV. Thus, while the ions can be
considered as collisionless, the electrons remain colli-
sional even in the hot core of a fusion reactor.
Therefore, in order to apply the collisionless theory to
ITER, one needs to retain only the ion terms and neglect
all kinetic electron terms.

In order to develop a qualitative understanding of the
RWM dispersion relation, we include the trapped particle
contribution through the kinetic component of the energy
principle (the well known $WK)

$WK �
1

2

X
j�i;e

Z
dr�~�	? � ��~pKj ; (3)

where ~� is the plasma displacement, � the magnetic field
curvature, and ~pKj the nonfluid component of the per-
turbed trapped particle pressure. The poloidal harmonics
of ~pKj �

P
m ~pmj e

im( can be derived from the standard
solution of the drift kinetic equation for! 
 0 leading to

~pm
j �

25=2#1=2

5)3=2

Z 1

0
dv̂5e�v̂

2
Z 1

0
duK�u��j*m

X
1

‘��1

*‘�
j
‘;

(4)

�j � pj
!E 
!j

	N 
 �v̂2 � 3=2�!j
	T

!E 
!j
B

; (5)

*m �
Z )=2

0
d,

cos�2�m� q� arcsin�
���
u

p
sin,��

K�u�
�����������������������
1 � usin2,

p ; (6)

�j
‘ �

Z )

�)

d(
2)

e�i‘(
�
v̂2~�? � �


Zje

Tj
~Z
�
; (7)
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where ~Z � ~� 
 ~�? � r� represents the electrostatic cor-
rections, which can be obtained from the quasineutrality
condition. It is important to retain the electrostatic terms
since they enhance the kinetic effects.

The mode-particle resonance induces an imaginary
component of the $WK which fundamentally changes
the stability characteristics of the RWM. The RWM dis-
persion relation in terms of $W’s [12] can be rewritten to
include the kinetic effects,

.�w ’ �
$W1 
 $WK

$Wb 
 $WK
; (8)

where $W1 < 0 is the fluid energy without wall while
$Wb > 0 is the fluid energy in the presence of an ideal
wall with radius b. The opposite signs of $W1=b indicate
that the plasma is in the regime of wall-stabilized ideal
kinks and unstable RWM. By separating the resonant
(imaginary) and nonresonant (real) contribution to
$WK, it is straightforward to determine the following
instability condition for the RWM,

��$W1�$Wb > j$WKj
2 
 $WR

K�$Wb 
 $W1�: (9)

It is important to notice that the $WI
K term is always

stabilizing while $WR
K can be either stabilizing or desta-

bilizing. For a slow rotation (j
rotj<!i
	p) and low mode

frequency, the dissipation induced by the mode-particle
interaction ($WI

K) is much larger than the typical con-
tinuum damping by sound or Alfvén waves. Near the
standard no-wall limits where $W1 ’ 0, the real part is
stabilizing if $WR

K > 0, while the opposite occurs near
the wall limits where $Wb ’ 0. Since the no-wall limits
are the ones setting the maximum achievable beta in
tokamaks, we conclude that a positive $WR

K is desirable.
If $WR

K < 0, a stability window opens up near the wall
limits but the RWM can become unstable for �’s below
the no-wall limit and the size of $WI

K required for full
suppression increases. The size of the kinetic terms re-
quired for a full suppression of the RWM can be esti-
mated by substituting the heuristic approximations
105002-2
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$W1 � ��1 � ��, $Wb � ��b � ��, and $WK � ��x

iy� into Eq. (9) and extracting the stability conditions for
the coefficients x, y representing the size of the nonreso-
nant and resonant particle contributions. A simple calcu-
lation shows that the RWM is fully suppressed in region I
of Fig. 1 when

x�y < yb�> 0:5�1 � �̂


��������������������������������
�1 � �̂�2 � 4y2

q
�; (10)

x�y > yb�> 1 � 2jyj
����̂
�

q
=�1 � �̂�; (11)

where �̂ � �1=�b and yb � �1 � �̂�
����̂
�

q
=�1 
 �̂�. Note

that Eqs. (10) and (11) indicate that the larger the imagi-
nary part jyj, the smaller the real part x has to be in order
to achieve the full suppression of the RWM. For a typical
case where �̂ ’ 0:5, the stability condition (10) and (11)

requires x�y < 0:24�> 0:25 

��������������������
0:06 � y2

p
and x�y >

0:24�> 1 � 2:8jyj. The most severe condition on the
size of the real part occurs for y � 0 when x > 0:5 is
required for a full RWM suppression. Figure 1 shows the
behavior of the RWM growth rate versus � (small plots)
in different regions of the x-y plane (large plot). Full
RWM suppression occurs only in region I, while finite
stable regions develop in regions II–V. It is worth noting
that the instability drive [i.e., the left hand side of Eq. (9)]
vanishes at both the wall and the no-wall limits. This
constraint on the driving term helps to keep its size
numerically small as long as ��b � �1� & �1. It is there-
fore appropriate to order the instability drive
�$W1$Wb � #$W2

F where $WF is the plasma fluid en-
ergy and # < 1 is the inverse aspect ratio. Using Eq. (3), it
is easy to show that the nonresonant kinetic term $WR

K

scales either as
���
#

p
$WF or #3=2$WF depending on the size

of the equilibrium electric field, and therefore its contri-
bution to Eq. (9) is of the same order of the driving term.
There is no simple ordering for $WI

K because of the
exponential function in Eq. (4). However, a simple analy-
sis for realistic values of !E indicates that max�$WI

K� �
max�$WR

K�, thus implying that all the terms in Eq. (9) can
be of the same order and the stability of the RWM can be
significantly affected by the kinetic effects.

For a quantitative analysis of the trapped particle
effects, one needs to solve the full eigenvalue problem.
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The simple model of a toroidal plasma described in
Ref. [11] with a flat pressure and current profiles has suc-
cessfully been used to solve the eigenvalue problem for
the RWM. We follow this approach and find that the ki-
netic contribution can be easily included after a careful
analysis of the terms in the kinetic pressure (4)–(7). It is
important to notice that in realistic finite-aspect-ratio
diffused tokamak equilibria, all the frequencies in
Eq. (5) can be of similar magnitudes and should all be
retained. Their relative sizes are important to determine
the sign and magnitude of ~pK and $WK. However, in a
sharp boundary model, the three frequencies !	N , !	T ,
and !E are $ functions, and the sign of ~pK is undefined
and cannot be related to the actual value for realistic equi-
libria. In order to capture the essential physics of realistic
equilibria, we rewrite Eq. (5) in the following form:

�j � �Nj
R
2

dTj
dr

v̂2 � 3
2 


‘Tj
‘Nj


 2
‘Tj
R w

j
E

wjE 
 v̂2H�u�
; (12)

where wjE � !E= �!j
B, ‘Tj � �Tj=�dTj=dr�, and ‘Nj �

�Nj=�dNj=dr�. The step-function character of the tem-
perature profile is included only in the term dT=dr on the
right hand side, which yields dT=dr � �T$�a� r�. All
the other terms containing ‘T and ‘N are considered as
finite and are evaluated using realistic equilibrium pro-
files at some average radius. Though heuristic, this ap-
proach helps to produce results that are possibly in quan-
titative agreement with the case of realistic tokamak
equilibria. Because of the $-function character (through
�) of the perturbed kinetic pressure, the RWM stability
analysis is identical to the one carried out in Ref. [11]
except for the boundary conditions at the plasma-vacuum
interface which includes the kinetic effects as indicated
below,

�jpF 
 B2=2j�a � �� � n̂
Z a


a�
dr~pK; (13)

where pF is the fluid pressure as defined in Ref. [11]. It
follows that the eigenvalue condition for the RWM can be
obtained by matching the plasma to the vacuum plus
resistive wall solution at the plasma-vacuum interface
r � a yielding the kinetically modified version of
Eq. (67) of Ref. [11],
�hq�2
Va i � q�2

a �m ~ m=hm � hma ~ 0
m=m


3

2

�
#

�
m
 1

hm
1

~ m
1 

m� 1

hm�1

~ m�1

�
|
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Fluid instability drive


 K:T: �
X
k

$mk�.�w� ~ k; (14)

where K:T: is the kinetic term, qa is the plasma side edge safety factor, hm � 1 �m=qa, ~ m � rhmB~6m�a�=m, and qVa is
the safety factor from the vacuum side. The resistive wall contribution enters through the term $mk defined in Ref. [11].
The kinetic term in Eq. (14) is obtained by substituting Eq. (4) into Eq. (13), yielding

K :T: � �
1

2
���
2

p
)

������
#a

p
X
k

�
K�

mkr@r 
 kK

mk 


X
l;p

&ml�A
�1�lp�B

�
pkr@r 
 kB


pk�

� ~ k
hk
;
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FIG. 2. RWM growth rates versus �N for different reduction
factors ) � 0; 0:2; 0:4; 0:6.
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B�
pk �

X
j

Zj
r
‘Tj

Z 1

0
duUj

2*p*
�
k ;

Alp �
X
j

Ttot

Tj

�
)

�����
#r

p

2
���
2

p $̂lp �
r
‘Tj

Z 1

0
duUj

1*l*p

�
;

&ml �
X
j

Zj(̂j
Z 1

0
duUj

2*


m*l;

K�
ml �

X
j

Tj
Ttot

(̂j
Z 1

0
duUj

3*


m*

�
l ;

Uj
k �

K�u�
H�u�

�
Vk
1�w

j
E�


�‘Tj
‘Nj

�
3

2

 2

‘Tj
R
wjE

�
Vk�w

j
E�

�
;

Vk�w� �
1

2
����
)

p
Z 1

0
dz

e�zzk�1=2

z
w=H�u�
;

where *�
m � *m�1 � *m
1, Ttot �

P
jTj, (̂j �

1=�1 
 ‘Tj=‘Nj�, #r � r=R, and $̂lp is the Kronecker delta
symbol. The RWM growth rate is determined by setting
to zero the determinant of Eq. (14). We use parameters
relevant to the ITER advanced-tokamak scenario [10]
characterized by a rather flat q profile with q� 2–2:5
over 70% of the plasma column, a sharp rise to q� 7 at
the plasma-vacuum interface, and a separatrix (q! 1)
on the vacuum side. In our simple tokamak model, the
ITER-like q profile varies from q0 � 2:1 in the center to
qa � 2:5 from the plasma side at the plasma-vacuum
interface and q! 1 from the vacuum side at the
plasma-vacuum interface. Such a q profile yields the no-
wall limits of �1

N ’ 2:5 in agreement with Ref. [10]. A
close-fitting ideal wall (simulating the effects of ITER
vacuum vessel and blanket module) at b ’ 1:2a yields the
ideal wall limits of �bN ’ 4:5 that are close to those of
Ref. [9]. The resistive wall time is �w ’ 0:2 s [10] and
!A�w � 2:4 � 105. The density and temperature profiles
are assumed flat and parabolic, respectively. The gradient
scale length ‘T in the kinetic terms is computed at r̂ �
r=a � 0:7 where the RWM eigenfunction is large and the
ions are still collisionless. The edge average aspect ratio is
calculated for an elliptic cross section with < 
 1:8 lead-
ing to #a � a

����
<

p
=R0 ’ 0:45. Nine harmonics m � 1–9

are retained to capture all the significant sidebands of
the fundamentalm � 3 mode. For a static plasma (
rot �
0), the equilibrium electric field is calculated from the ion
equilibrium equation in the absence of flow leading to
!E � �!i

	p and wiE � �#�1
r r̂2=�1 � r̂2�. Only the ions

are retained as a kinetic species and the kinetic term in
Eq. (14) is multiplied by a coefficient ) � 1 in order to
study the impact on the RWM stability at different )’s.
The fluid result is recovered for ) � 0 while the kinetic
effects are fully included when ) � 1. Figure 2 shows the
RWM growth rates for different values of ), and the
RWM is fully suppressed by � 70% of the trapped ion
contribution.
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This important result indicates that the RWM can be
suppressed in ITER even in the absence of plasma rota-
tion. The resonance condition and the ion force balance
indicate that the stabilizing effect of mode-particle reso-
nance is significant when the plasma rotation is less than
!i

	p and peaks at 
rot 
 !i
	p=2 corresponding to a flow

velocity of about 40 km=s for ITER. These stabilizing
effects may also play a role in DIII-D and NSTX stability
if the high-� regimes are reached in quasistationary
plasmas. However, the stabilization may be weaker in
smaller tokamaks as the wall time is shorter and the
condition !<!B is satisfied over a smaller range of
�’s. Furthermore, fast rotation leads to large electric
fields, and large values of!E � 
rot � !i

	p hence reduce
the kinetic effects of trapped particles. Though the simple
model used here includes all the relevant physics, a more
accurate assessment of the proposed stabilization mecha-
nism should be carried out for realistic equilibria by
modifying existing MHD stability codes.
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