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Self-sustained oscillators may turn non-self-oscillatory as a result of some kind of deterioration,
which we call aging for simplicity. We discuss the effect of aging on the behavior of globally and
diffusively coupled oscillators which are either all periodic or chaotic. It is shown that at a certain level
of aging, macroscopic oscillation stops in a way which depends on the coupling strength. A universal
scaling function to describe it is analytically derived and numerically verified.
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Coupled oscillators play a crucial role in a variety of
areas in science and technology. Their dynamics underlie
many important activities of living organisms to main-
tain life, e.g., heart contraction, peristaltic motion of
gastrointestinal tracts, circadian rhythms [1] and visual
information processing in mammalian brains [2]. Studies
of coupled oscillators may therefore provide keys to elu-
cidate the nature of life. Moreover, such studies may be
useful in technological applications, examples of which
include designing central pattern generators [3] for the
locomotion of robots and coupled Josephson junctions as
a stable source of voltage [4]. Experimental studies are
also in progress, checking theories developed so far [5].

Coupled-oscillator systems supporting life as men-
tioned above are composed of a large number of oscilla-
tory elements [1]. This seems quite reasonable, because
the macroscopic activity of a large-scale system should be
robust against various damages or deterioration such that
some elements turn non-self-oscillatory, which we shall
call aging for simplicity. However, to the authors’ knowl-
edge, it has not yet been investigated how robust a popu-
lation of coupled oscillators can be against such aging and
in what way its macroscopic activity is lost when the
deterioration proceeds. These questions are important
not only in understanding the robustness of the function
of diverse biological and physiological systems, but also
in technological contexts where a central problem is to
design a robust system.

In this Letter, we study the effect of aging on the
macroscopic activity of globally and diffusively coupled
oscillators by increasing the ratio of non-self-oscillatory
elements p from zero [6]. As oscillators, which are as-
sumed identical in this Letter, we deal with both limit-
cycle oscillators and chaotic oscillators. By introducing
an order parameter, we show that macroscopic oscillation
stops at a critical value of p which depends on the
coupling strength K. Moreover, it is shown that such a
transition is characterized by a universal scaling law
involving both p and K. Numerical integrations in this
work were performed for random initial conditions by
means of the fourth order Runge-Kutta method with time
step 0.1.
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We begin with an analysis of globally coupled Stuart-
Landau equations of the form (see, e.g., [7–11])

_zj � ��j � i�� jzjj
2�zj �

K
N

XN
k�1

�zk � zj� (1)

for j � 1; . . . ; N, where the overdot means differentiation
with respect to time t, zj is the complex amplitude of the
jth oscillator, �j is a parameter specifying the distance
from a Hopf bifurcation, � is the natural frequency, and
K is the coupling strength. Without coupling, the jth
element exhibits periodic oscillations if �j > 0, and set-
tles down at the trivial fixed point zj � 0 if �j � 0. We
assume that aging of the system proceeds in such a way
that an active oscillator with �j � a > 0 turns inactive
with �j � �b < 0, where both a and b are parameters.
For convenience, we set the group of active elements to
j 2 f1; . . . ; N�1� p�g � Sa and that of inactive elements
to j 2 fN�1� p� � 1; . . . ; Ng � Si. We suppose that the
system size N is large enough to enable us to regard the
ratio p virtually as a continuous variable. In this setting,
the system with p � 0 and K > 0 falls in perfect syn-
chronization, in which each element oscillates with am-
plitude

���
a

p
and frequency �.

We now check the effect of aging through the behavior
of the order parameter jZj, where Z � N�1 PN

j�1 zj.
Figure 1 shows its normalized values against p for some
values of K. It is found that the order parameter vanishes
at a critical value of p, pc. For p 
 pc, the system falls
into the trivial fixed point z1 � . . . � zN � 0 and is no
longer active.We propose to call such a transition an aging
transition. Figure 1 shows that for decreasing K, pc
increases until it reaches unity at a threshold value of K,
Kc, below which pc remains at unity.

The pair of critical values pc and Kc can be obtained by
assuming that in each group, all elements are in an
identical state. Setting zj � A for all active elements
and zj � I for all inactive elements, we obtain

_A � �a� Kp� i�� jAj2�A� KpI; (2)

_I � ��b� Kq� i�� jIj2�I � KqA; (3)

where q � 1� p. Then, it follows that the aging transi-
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FIG. 2. Aging in the coupled periodic Rössler systems,
where N � 1000, Q � M�p�=M�0�, and Kc � 0:046 736 55 . . . .
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FIG. 1. Aging in the coupled Stuart-Landau equations,
where N�1000;a�2;b�1;��3, and Q � jZ�p�j=jZ�0�j.
The inset shows trajectories of zj for K�3;p�0:6 in the com-
plex plane with the abscissa and ordinate meaning the real and
imaginary part, respectively; both active (dashed curve) and
inactive (dotted curve) elements are perfectly synchronized
within each group; the solid curve shows the trajectory of Z.
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tion occurs when the trivial fixed point A � I � 0 is
stabilized as p is increased from zero. A linear stability
analysis shows that

pc �
a�K � b�
�a� b�K

; (4)

below which a stable limit cycle bifurcates (see the inset
of Fig. 1). This result implies that Kc � a, in accord with
simulation. The reduction to the four-dimensional system
(2) and (3) is validated by the fact that the attractors of the
reduced system can be shown to be stable in the full
system as well [12].

We found similar results for some other examples of
globally and diffusively coupled limit-cycle oscillators.
One of them is coupled Rössler equations [13] of the form

_xj � �yj � zj �
K
N

XN
k�1

�xk � xj�; (5)

_yj � xj � cjyj �
K
N

XN
k�1

�yk � yj�; (6)

_zj � dj � zj�xj � ej� �
K
N

XN
k�1

�zk � zj� (7)

for j � 1; . . . ; N (for a similar system, see [14]),
where cj; dj, and ej are all constants. As an example,
we set cj�dj�0:2;ej�1�j2Sa�;cj�dj��0:2;ej�
2:5�j2Si�. For K � 0, each element of the first group
exhibits periodic oscillations, while every member of
the second group falls into a fixed point. As a measure
of activity, we use the amplitude of macroscopic oscilla-
tion defined by

M �
�����������������������������������������
<�Xc �<Xc>�2>

q
; (8)
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where Xc � N�1 PN
j�1�xj; yj; zj� is the centroid and the

bracket means a long time average. Note that for the
coupled Stuart-Landau equations, M is equal to jZj.
The behavior of M in the coupled Rössler equations is
shown in Fig. 2 for N � 1000 and some values of K,
where we again find aging transitions. For large K, M
shows a resonancelike behavior before it vanishes at p �
pc. Intriguingly, in such a case, the activity of the system
is enhanced by increasing the ratio of inactive elements.
Figure 3 shows where the transition occurs in the �K; p�
plane; in the displayed area, for decreasing K, pc first
increases to reach unity and then remains there, just as in
the coupled Stuart-Landau equations. As also shown, this
simulation result is reproduced by a linear stability analy-
sis of the fixed point of a six-dimensional system created
by the same reduction procedure as for (1). However, this
figure also indicates that such a reduction breaks down in
some regions where K is small. In such a case, what is
called clustering (see, e.g., [11,15]) was observed to hap-
pen in the active group [12,16].

The above results are not restricted to limit-cycle os-
cillators. Figure 4 is devoted to a case of chaotic oscil-
lators, i.e., equations (5)–(7) with the same parameter
values as above, except for ej � 5:7�j 2 Sa�. Without
coupling, each element of the active group exhibits chaos
[13]. As we see, the behavior of M is similar to those
displayed in Figs. 1 and 2. However, the bifurcation
structure leading to an aging transition is richer, as dem-
onstrated in the inset of Fig. 4. As p is increased, a reverse
period-doubling cascade occurs, leading to a one-loop
limit cycle, which then disappears at p � pc, giving
way to a stable fixed point. It was confirmed that the
corresponding phase diagram is qualitatively similar to
Fig. 3, though the six-dimensional reduction is violated in
a much wider area within the region K <Kc [12].

The aging transition is a critical phenomenon featured
by the existence of two critical parameter values pc and
Kc. The behavior of the order parameter near p � pc and
K � Kc is therefore especially interesting. We expect that
104101-2
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FIG. 3. Phase diagram for the same system as treated in
Fig. 2 except for N � 100. The diamonds mark aging transition
points, while the solid curve is the corresponding result ob-
tained by reduction to a six-dimensional system. The crosses
show where such a reduction breaks down in the sense that for
at least one variable, the maximum and minimum values
within a group after a sufficiently long time (2:1� 104) differ
by more than 10�4. Note that the breakdown at K � 0 is trivial,
because initial conditions are random.

10−5

10−4

10−3

10−2

10−1

100

10−4 10−3 10−2 10−1 100

Q

pc−p

K=0.1
K=Kc

K=0.035
slope 0.504
slope 1.491
slope 1.007

FIG. 5. Critical scaling of M in the coupled periodic Rössler
systems with the same details as in Fig. 2. The slopes were
computed by the method of least squares for the data in the
range pc � p � 0:01.
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FIG. 4. Aging in the coupled chaotic Rössler systems, where
N � 1000; Q � M�p�=M�0�, and Kc � 0:097 177 87 . . . . The
inset shows a bifurcation diagram of the centroid Xc �
�xc; yc; zc� for K � 0:15 on a Poincaré surface defined by xc �
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VOLUME 93, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S week ending
3 SEPTEMBER 2004
near p � pc,

M / �pc � p�� (9)

with an exponent �> 0. Indeed, for the coupled Stuart-
Landau equations, it is easy to show analytically that � �
1=2�K >Kc � a�; 3=2�K � Kc�, and 1�K <Kc�.
Curiously, the changes of � are not monotonic with
respect to K. Actually, the same result seems to hold in
all coupled-oscillator systems which were found to ex-
hibit aging transitions. Figure 5 shows evidence in the
case of coupled periodic Rössler systems studied above.
We also observed crossover phenomena near K � Kc, i.e,.
as p approaches pc, � switches from 3=2 to either
1=2�K >Kc� or 1�K <Kc�.

In order to explain these results, let us consider a
general form of globally and diffusively coupled oscilla-
tors as follows:

_x j � Fj�xj� �
K
N

XN
k�1

D � �xk � xj� (10)

for j � 1; . . . ; N, where xj is the state vector of the jth
element, and Fj � F�j 2 Sa�;G�j 2 Si�, and D is a con-
stant diffusion matrix. Suppose that the dynamical sys-
tem _x � F�x� is active in the sense that it exhibits a
nonstationary behavior such as periodic oscillation and
chaos, and that the dynamical system _x � G�x� is in-
active in the sense that it falls into a stable fixed point,
which is denoted by I0 below. We also consider the
reduced system obtained by setting xj � A�j 2 Sa�;
I�j 2 Si�, i.e.,

_A � F�A� � KpD � �I�A�; (11)

_I � G�I� � K�1� p�D � �A� I�: (12)
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Below, we assume that this reduced system has a fixed
point, say �A�; I��, and that for a certain value of p, ~p�K�,
it is stable for p > ~p�K�, but unstable for p < ~p�K�, giv-
ing way to a stable limit cycle through a supercritical
Hopf bifurcation at p � ~p�K�. Our empirical results sug-
gest that these assumptions hold fairly generally. Note
that in the reduced system, p is a free parameter, which
may be larger than unity. On the basis of the simulation
results, we assume that pc � ~p�K�< 1�K >Kc�; pc �
~p�K� � 1�K � Kc�, and pc � 1; ~p�K�> 1�K <Kc�.

Note also that I� � I0 for p � 1. The critical coupling
strength Kc is therefore determined by requiring that the
fixed point A� of _x � F�x� � KcD � �I0 � x� be margin-
ally stable.

We now discuss the critical behavior of M. Inspired by
simulation results, we assume that except a region where
K is substantially smaller than Kc, the behavior of the
104101-3
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FIG. 6. Crossover scaling in the coupled periodic Rössler
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the same as in Fig. 2. The dashed line and curve show the
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original system (10) can be successfully reproduced by
the reduction to (11) and (12). Then, the result � �
1=2�K >Kc� follows from the nature of Hopf bifurcation.
The power law for K <Kc, � � 1, can be easily derived
from the assumed stability of I0 [12]. We therefore focus
on a close neighborhood of K � Kc. Let us express the
centroid of the system (10) as Xc � �1� p��A� � �A� �
p�I� � �I�, where �A � A�A� and �I � I� I�. The
key observation is that for 0< ~p�K� � p � 1, we can
put �A � �~p�K� � p�1=2a; �I � �~p�K� � p�1=2�1� p�i,
where a and i are such quantities that the variance does
not vanish at p � 1 and p � ~p�K�. This follows from the
assumption that p � ~p�K� is a supercritical Hopf bifur-
cation point in the reduced system and also that near
p � 1, I� I0 � O�1� p� as well as I� � I0 � O�1�
p�, as follows from the form of (12). Then, we find out that
� � 3=2 for K � Kc.

The above analysis reveals a universal scaling law of
the order parameter M near both p � pc and K � Kc.
Introducing g � j~p0�Kc�j, where the prime means differ-
entiation by K, and h denoting the standard deviation of
a� pi at p � 1 and K � Kc, we obtain

M
h

� �pc � p�3=2�
�
g
K � Kc

pc � p

�
; (13)

where ��x� � 1� x �x 
 0�;
������������
1� x

p
�x < 0�. This

crossover scaling law is exemplified in Fig. 6. This
result implies that the crossover occurs when pc � p�
gjK � Kcj, provided K is sufficiently close to Kc.

In summary, as the ratio of inactive elements p exceeds
a certain value, pc, globally and diffusively coupled
oscillators lose their macroscopic activity. This aging
transition is characterized by a universal scaling law of
104101-4
an order parameter concerning both p and the coupling
strength K. Empirically, this seems to be a fairly general
scenario, though further studies are necessary. The cri-
tical level of aging pc is a measure of the robustness
of macroscopic oscillation in the original system with
p � 0. This work reveals that typically it decreases for
increasing K. Therefore, although favorable for coherence
at p � 0, large coupling strength may be harmful in view
of the robustness against aging. It might be that coupling
strengths in living tissues and organs are optimally tuned
in this sense. A remaining subject is to examine the effect
of aging on nonidentical oscillators, e.g., with distributed
natural frequencies. Such a study will be reported else-
where together with the details of this work [12].
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