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Soliton Trains in Bose-Fermi Mixtures
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We theoretically consider the formation of bright solitons in a mixture of Bose and Fermi degenerate
gases. While we assume the forces between atoms in a pure Bose component to be effectively repulsive,
their character can be changed from repulsive to attractive in the presence of fermions provided the
Bose and Fermi gases attract each other strongly enough. In such a regime the Bose component becomes
a gas of effectively attractive atoms. Hence, generating bright solitons in the bosonic gas is possible.
Indeed, after a sudden increase of the strength of attraction between bosons and fermions (realized by
using a Feshbach resonance technique or by firm radial squeezing of both samples) soliton trains appear
in the Bose-Fermi mixture.
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Solitonic solutions are a very general feature of non-
linear wave equations. They differ from ordinary wave
packets as they retain their shape while propagating in-
stead of spreading due to dispersion. This intriguing
feature is based on the existence of a nonlinear interaction
which compensates for dispersion and produces a self-
focusing effect on the propagating wave packet.

Dilute atomic quantum gases offer a unique environ-
ment to study fundamental solitonic excitations in a pure
quantum system with intrinsic nonlinearity. Since the
interparticle interaction causing this nonlinearity can be
both attractive and repulsive, the Gross-Pitaevskii equa-
tion describing the evolution of the condensate wave
function exhibits both dark and bright solitonic solutions
[1]. Dark solitons as a fundamental excitation in stable
Bose-Einstein condensates with repulsive interparticle
interaction have already been studied in [2–4].

Bright solitons have been observed in Bose-Einstein
condensates of 7Li in quasi-one-dimensional geometry
[5,6]. However, in three-dimensional geometry usually
used to prepare the sample the necessary large and nega-
tive scattering length leads to density-limited particle
numbers (dynamical instability— collapse). The observa-
tion of bright solitons was therefore possible only due to
the magnetic tuning of the interactions from repulsive
(used to form a stable Bose-Einstein condensate) to at-
tractive during the experiments.

Another experimental approach to bright matter wave
solitons was realized in the recently reported observation
of gap solitons [7] in a condensate with repulsive inter-
actions by engineering of the matter wave dispersion
relation via sophisticated manipulation in a periodic po-
tential (concept of negative effective mass [8]).

In this Letter we propose a novel scheme to realize
bright solitons in one-dimensional atomic quantum gases.
In particular, we study the formation of bright solitons in
a Bose-Einstein condensate embedded in a quantum de-
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generate Fermi gas. One important feature is that this
mixture allows tuning of the one-dimensional interac-
tions not only by Feshbach resonances but also by simply
changing the trap geometry.

We consider the bare interaction between bosonic
atoms to be repulsive (gB > 0), whereas the particle in-
teraction between bosonic and fermionic atoms is as-
sumed to be strongly attractive (gBF < 0). Bright
solitons in Bose-Fermi gas mixtures are then produced
as a result of a competition between two interparticle
interactions: boson-boson repulsion versus boson-fermion
attraction. Experimentally, this situation is, for example,
accessible in Bose-Fermi mixtures of bosonic 87Rb atoms
and fermionic 40K atoms.

We determine the critical strength of attraction be-
tween bosons and fermions necessary for the formation
of bright solitons and show that these parameter regimes
might be achievable in present experiments. We study the
formation of bright solitons by different excitation
mechanisms: either increasing the attractive boson-
fermion interaction by Feshbach resonance techniques
or by radial squeezing of the mixture which corresponds
to increasing the effective one-dimensional scattering
length. We contrast the response of the system following
adiabatic and fast increase of the boson-fermion interac-
tion strength.

We consider a Bose-Fermi mixture confined in a trap at
zero temperature and describe this system in terms of the
many-body wave function 
�x1; . . . ;xNB

; y1; . . . ; yNF
�,

where NB and NF are the numbers of bosons and fermi-
ons, respectively. We use the approach based on the
Lagrangian density. Since the fermionic sample is spin
polarized only boson-boson and boson-fermion interac-
tions are included. At zero temperature we assume that
the wave function of the Bose-Fermi mixture is a product
of the Hartree ansatz for bosons and the Slater determi-
nant (antisymmetric wave function) for fermions.
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FIG. 1. Density profiles (normalized to one) of a one-
dimensional Bose-Fermi mixture for NB � 1000 bosons and
NF � 100 fermions for various strengths of interspecies attrac-
tion. The effective repulsion for bosons is gB � 0:0163 oscil-
latory (osc.) units. Solid lines correspond to the Bose fraction,
whereas the dashed ones indicate fermions.
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Introduced in this way the single-particle wave functions
�’�B�; ’�F�

1 ; . . . ; ’�F�
NF
� have to now be determined.

Therefore, the assumed many-body wave function is in-
serted into the Lagrangian density and integrated over
the NB � 1 bosonic and NF � 1 fermionic spatial coor-
dinates. This leads to the mean-field single-particle
Lagrangian (for details, see Ref. [9]) and the correspond-
ing Euler-Lagrange equations are the basic equations of
the presented approach (here, j � 1; 2; :::; NF)

i �h
@’�B�

@t
� �

�h2

2mB
r2’�B� � V�B�

trap’
�B�

�gBNBj’
�B�j2’�B� � gBF

XNF

i�1

j’�F�
i j2’�B�;

i �h
@’�F�

j

@t
� �

�h2

2mF
r2’�F�

j � V�F�
trap’

�F�
j

�gBFNBj’
�B�j2’�F�

j :

(1)

All of the above equations have a simple interpretation.
Removing the last terms in these equations (i.e., neglect-
ing the mean-field interaction energy between Bose and
Fermi components in comparison with other energies)
one recovers the Gross-Pitaevskii equation for a degener-
ate Bose gas and the set of Schrödinger equations describ-
ing a noninteracting Fermi system. It is easy to notice that
when the Bose and Fermi gases attract each other strongly
enough the mean-field energy connected with this attrac-
tion can overcome the repulsive mean-field energy for
bosons. It means that the presence of a degenerate Fermi
gas changes the character of the interaction between the
bosonic atoms from repulsive to attractive.

Based on the above considerations one can write the
condition for the value of the critical strength of attrac-
tion between bosons and fermions. It is given by gBnB �

jgcrBFjnF, where nB � NBj’
�B�j2 and nF �

PNF
i�1 j’

�F�
i j2 are

the densities of both fractions, normalized to the number
of particles, taken at the center of the trap. A rough
estimation of gcrBF can be found assuming that the den-
sities of both components are calculated within the
Thomas-Fermi approximation and that the components
do not interact. Then we have

jgcrBFj � C
N2=5

B

N1=2
F

gB; (2)

where C � C1�a
B
?=aB�

3=5�aF?=a
B
?�

3�2=5
B =�1=2

F , C1 �

39=1052=5�=16 	 1:0, a? is the radial harmonic oscillator
length, � � !z=!? defines the aspect ratio of the axially
symmetric trap, and aB is the s-wave scattering length for
the pure Bose gas related to the interaction strength
through gB � 4� �h2aB=mB. The condition (2) has several
implications. Squeezing radially both the Bose and Fermi
components decreases the value of critical gBF. The same
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happens when the number of fermions is getting bigger in
comparison with the number of bosons. For a particular
trap the numbers of atoms are limited by the occurrence
of a collapse [10]. In the case of the experiment of
Ref. [10] it was found that the system was stable if the
number of atoms in both species (87Rb and 40K in j2; 2i
and j9=2; 9=2i hyperfine states, respectively) were smaller
than 2� 104. Taking the parameters of that experiment
(!B

? � 2�� 215 Hz and !B
z � 2�� 16:3 Hz) and as-

suming the following numbers of atoms, NB � 103 and
NF � 104, one gets the critical coupling jgcrBFj � 6:7gB
which equals the natural value of gBF for a 87Rb-40K
mixture in the double-polarized state mentioned above.
It is understood that relation (2) is only a necessary
condition for creation of bright solitons. Another impor-
tant factor is the geometry of the system.

In the following we concentrate on a one-dimensional
geometry, which is most favorable for the appearance of
solitons. In Fig. 1 we plot the density profiles (in oscil-
latory units defined as 1=aho, where aho �

�������������������
�h=mF!F

p
) of

the Fermi (dashed lines) and Bose (solid lines) compo-
nents of the one-dimensional mixture in its ground state.
The gases are confined in a trap with frequencies 2��
30 Hz (for fermions) and 2�� 20 Hz (for bosons). To get
these curves we solve numerically the set of Eqs. (1) by
evolving adiabatically the coupling constant gBF from
zero to the given value. Even though the number of bosons
is 10 times larger than the number of fermions, the size of
the fermionic cloud is much bigger due to the Pauli
exclusion principle. We see that after turning on the
attractive forces between the components some number
of fermions is drawn inside the bosonic cloud. When the
attraction is increasing further the fermionic cloud is
clearly divided into two distinguishable parts. One of
100401-2
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them is a broad background gas, whereas the second is the
narrow density peak hidden within the bosonic peak.
Both peaks get higher and narrower when the attraction
is getting stronger. This is a sign of effective attraction.

It turns out that for strong enough attraction between
the Bose and Fermi components the central peaks (bo-
sonic and fermionic ones) in Fig. 1 form a structure which
after switching off the trapping potential persists without
changing its shape. However, the broad fermionic back-
ground is lost. This is illustrated in Fig. 2, where the
fermionic and bosonic densities are plotted some time
after opening the trap. Upper and lower frames differ by
the value of gBF. In the case of the upper frame the
strength of attraction is weaker than the critical one and
no solitonic behavior is observed—the bosonic and fer-
mionic clouds spread out. For the lower frame the attrac-
tion is strong enough and the formation of a pronounced
peak in both Bose and Fermi components is observed.
Such a structure can be forced to move by imposing a
momentum on it (realized experimentally, e.g., by apply-
ing a Bragg scattering technique) and its shape again does
not change. The critical value of the coupling constant is
in our one-dimensional model approximately equal to
gcrBF 	 �1:0 osc. units ( �h!Faho) and can be compared
to the value obtained based on the one-dimensional coun-
terpart of condition (2). Taking the ratio nB�0�=nF�0� �
57:5 from Fig. 1 one gets gcrBF � �0:94 osc. units what
remains in agreement with the numerical estimation.

In Figs. 3 and 4 we show the densities of the Bose and
Fermi components after the strength of attraction be-
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FIG. 2. Illustration of the solitonic character of the ground
state of the Bose-Fermi mixture. Both frames show the den-
sities 34 ms after switching off the trapping potential. Only
when the attraction between the species is stronger than the
critical one (the lower frame) the system forms a single-peak
two-component structure which does not spread in time.
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tween bosons and fermions has been increased by using
a Feshbach resonance technique. The other way of chang-
ing the interaction strength could be the firm radial
squeezing of both samples. The basic observation is that
some time after switching the mutual interaction the
bosonic cloud explodes into several peaks that oscillate
under the influence of the trapping potential. This hap-
pens provided that the final coupling (attraction) between
both components is strong enough. Stronger attraction
results in a bigger number of peaks. Each bosonic peak
(the solid line) contains the fermionic density (the dashed
line).

Each single peak of this two-component structure os-
cillates in the trap almost without changing its shape with
slightly different initial velocity. The initial velocity is
determined by the amount of energy injected into the
system due to the change of the coupling constant (i.e., by
its rate and magnitude). All peaks meet at the center of
the trap, where they collide, every half of the oscillation
period. Usually, the transfer of some number of atoms
happens during the collision. The analysis of the collision
of two slowly moving peaks under no axial confinement
shows that they are repulsive. The shape of the wave
packet is not a secans-hyperbolicus one as it is for the
solutions of the Gross-Pitaevskii equation for an attrac-
tive uniform condensate. This is because of a different
kind of nonlinearity present in the system due to media-
tion of the bosonic interaction by the fermions. After
switching off the trap each peak travels with constant
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FIG. 3. Density profiles of a one-dimensional Bose-Fermi
mixture after switching the attraction between the Bose and
Fermi components from gBF � �0:5 to gBF � �2:0 osc. units.
The interaction strength is changed linearly during 8.5 ms
(upper frame) and 17 ms (lower frame). The snapshots are
taken at 20 ms. A more adiabatic change of the strength of
attraction results in a lower number of solitons.
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FIG. 4. Density profiles of a one-dimensional Bose-Fermi
mixture 10.5 ms after changing the strength of attraction
between two species from the initial value gBF � �0:8 osc.
units to the final one indicated by the label. Here, the strength
of the interaction is increased instantaneously. The bosonic
cloud breaks into several bright solitons; each soliton contains
a piece of fermionic cloud. The bigger jump in the coupling gBF
results in a bigger number of solitons.
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velocity without spreading. All the properties just dis-
cussed indicate that the observed structures can be called
solitons.

In the case of Fig. 4 the strength of the coupling
between the Bose and Fermi gases is changed instanta-
neously. The relative heights of the peaks depend on the
initial width of the bosonic cloud and they get higher for a
bigger number of bosons or smaller bosonic trap fre-
quency. The latter can be realized only in the optical
trap, since in the magnetic trap this ratio is fixed by the
magnetic moments of the two atomic species. On the
other hand, in Fig. 3 we show the response of the system
when the mutual attraction is increased within a finite
time which is on the order of the trap period. Slower
switching off the interaction leads to a smaller number
of solitons.

Based on the numerical results, we propose two
schemes for generating bright solitons in degenerate
Bose-Fermi mixtures. First of all, the system has to be
pushed in the range of strong enough attraction between
fermions and bosons. This can be achieved by producing a
mixture in an appropriate doubly polarized state (for
details, see Ref. [11]) and by using the Feshbach reso-
nance technique. Another way is to follow the idea re-
ported in Ref. [12] according to which squeezing radially
both samples firmly enough imposes a one-dimensional
geometry on the system with one-dimensional interaction
strength given by g3D=�a2? (a? is the radial harmonic
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oscillator length). Increasing the radial confinement leads
then to higher effective one-dimensional interaction
strength. Therefore, one way to generate solitons in a
Bose-Fermi mixture would follow the following sce-
nario: (i) the ground state of the system is formed in an
elongated trap at the natural value of gBF and (ii) the
strength of attraction gBF is then increased. Another way
could be performing the evaporation already under favor-
able conditions, i.e., at the presence of an appropriate
magnetic field or a strong enough one-dimensional ge-
ometry. However, in this case only one single-peak two-
component soliton is formed, placed at the center of the
trap.

In conclusion, we have shown that bright solitons can
be generated in a Bose-Fermi mixture as a result of a
competition between two interparticle interactions:
boson-boson collisions which are effectively repulsive
and boson-fermion collisions which are attractive.
Assuming that the strength of attraction is large enough
both kinds of atoms start to mediate in the other species
interaction introducing the system into a new regime
where locally Bose and Fermi gases become gases of
effectively attractive atoms. Therefore it becomes possible
to generate bright solitons in the system under such con-
ditions. Depending on how fast the change of the attrac-
tion strength is performed the system responds by
forming a train of solitons (fast change) or a single soliton
(adiabatic change). Each soliton is, in fact, the single-
peak two-component structure with the fermionic cloud
hidden within the bosonic one.
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