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Symmetry Driven Irreversibilities at Ferromagnetic-Antiferromagnetic Interfaces
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The coupling between a ferromagnet and an antiferromagnet can establish a directional anisotropy
called exchange bias. In many systems this exchange bias is reduced upon subsequent field cycling,
which is referred to as training effects. Numerical simulations of a simple coherent rotation model
suggest that the symmetry of the anisotropy in the antiferromagnet is crucial for the understanding of
training effects in exchange bias systems. Namely, the existence of multiple antiferromagnetic easy
anisotropy axes can initially stabilize a noncollinear arrangement of the antiferromagnetic spins, which
relaxes into a collinear arrangement after the first magnetization reversal of the ferromagnet.
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FIG. 1 (color online). Field dependence of the magnetization
of a polycrystalline Co=CoO bilayer showing the first (solid
symbols) and second (open symbols) hysteresis loop after field
cooling. The magnetization MF is normalized by the saturation
value MS. The solid and dashed lines show calculated hysteresis
loops for comparison [22].
Interactions between different magnetic materials in
layered systems can give rise to complex magnetic be-
havior. In particular, the interaction of an antiferromagnet
with a ferromagnet can establish a directional coupling,
which is referred to as an exchange bias. Even though this
effect was first discovered almost 50 years ago [1], the
underlying mechanism remains controversial [2–4].
Concurrently, exchange bias has gained technological
importance, since it pins and thus establishes a refer-
ence magnetization direction in spintronic devices, i.e.,
in magnetic read heads and nonvolatile memory [5].
Furthermore, many exchange bias systems show an in-
stability which results in a reduction of pinning upon
repeated field cycling [6]. These field training effects are
suspected to be due to irreversible changes in the mag-
netic microstructure of the antiferromagnet, but a com-
prehensive theoretical understanding is still missing. In
this Letter a simple and universal model is presented,
which implies that the irreversibilities upon field cycling
are driven by the symmetry of the anisotropy in the
antiferromagnet.

The induced unidirectional anisotropy in antiferro-
magnetic/ferromagnetic coupled systems generates a shift
HE (exchange bias) of the ferromagnetic hysteresis loop
from zero field. In many cases HE is reduced after the first
hysteresis loop. An example of this training effect is
shown in Fig. 1 utilizing the historical prototype system
Co=CoO. For a 10-nm thick polycrystalline ferromag-
netic Co film covered with an antiferromagnetic CoO
layer due to ambient oxidation, subsequent hysteresis
loops were measured, after the sample was cooled in a
field of �5 kOe from 300 to 10 K. This field cooling
establishes a shift HE;1 in the first hysteresis loop.
Furthermore, the first hysteresis loop has a clear overall
asymmetry; namely, the first magnetization reversal
(with decreasing field) has a sharp jump, while the second
reversal (with increasing field) is more gradual. In con-
trast, the second hysteresis loop is more symmetric, with
a significantly smaller shift HE;2 and similar shapes for
both magnetization reversals. Any subsequent hysteresis
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loops are essentially unchanged from the second hystere-
sis loop.

It has been suggested that training effects are con-
nected to the microstructure of exchange bias systems
[2,6]. This idea is corroborated by numerical simulations
of exchange bias systems with nonmagnetic defects in the
antiferromagnet [7]. While these simulations show that
the antiferromagnetic spin structure can change after
initial field reversal, they fail to show that this leads to
successively reduced exchange bias. However, training
effects have been observed experimentally in both poly-
crystalline [1,8] and epitaxial [9–11] systems. More im-
portantly, Malkinski et al. have specifically investigated
the influence of crystallinity on exchange bias in
Fe=KCoF3 [12]. They observed that independent of crys-
tallinity training effects were similar for poly- and
single-crystal KCoF3 samples. Moreover, training effects
are absent for FeF2 and MnF2 based exchange bias sys-
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tems independent of crystalline structure [13]. This sug-
gests that microstructure is not the critical parameter for
training effects.

A list of antiferromagnets sorted by the occurrence of
training effects in exchange bias systems is shown in
Table I. Note that all exchange bias systems where train-
ing effects occur contain high symmetry antiferromag-
nets with multiple equivalent easy magnetic axes. In
contrast, systems where training effects are absent for a
wide variety of different samples contain only antiferro-
magnets with uniaxial magnetic anisotropy. This is the
first clue that the symmetry of the magnetic anisotropy in
the antiferromagnet is crucial to understand training
effects.

Numerical simulations of magnetic hysteresis curves
for exchange bias systems with different symmetries for
the antiferromagnet are presented below to further ex-
plore this interesting clue. Using two independent mag-
netic sublattices for the antiferromagnet [20], one can
write the energy of the exchange bias system in a coherent
rotation model [21] as

E � �H �MF � JIMF �
X

i�A;B

Mi �H �
X

i�A;B

Mi

� JAFMA �MB � EK�MA;MB�; (1)

where H is the external magnetic field, MF is the mag-
netization of the ferromagnet, MA and MB are the two
antiferromagnetic sublattice magnetizations, JI is the
coupling between the ferromagnet and each antiferro-
magnetic sublattice, and JAF < 0 is the antiferromagnetic
coupling between the two antiferromagnetic sublattices
within the antiferromagnet. Notice that the second term
in Eq. (1) couples the ferromagnet to both antiferromag-
netic sublattices. This is consistent with either a spin-
compensated surface of the antiferromagnet or a spin-
TABLE I. Antiferromagnets of exchange-biased systems.

Training observed No training observed

CoOa FeF2
b

FeOc MnF2
d

FeMne

Ir22Mn78
f

KCoF3
g

NiFeMnh

NiOi

PtPdMnj

aFrom Refs. [6,8,9].
bFrom Ref. [14].
cFrom Ref. [15].
dFrom Refs. [14,16].
eFrom Ref. [17].
fFrom Ref. [18].
gFrom Ref. [12].
hFrom Ref. [6].
iFrom Refs. [10,11].
jFrom Ref. [19].

097203-2
uncompensated surface with significant interface rough-
ness [4]. The last term in Eq. (1), EK, is the anisotropy
energy of the antiferromagnet given by either

EK � KMAF�sin
2�2�A� � sin2�2�B�� or (2a)

EK � KMAF�sin
2��A� � sin2��B�� (2b)

for the case of biaxial (2a) or uniaxial (2b) symmetry of
the anisotropy. K is the anisotropy constant, MAF �
jMAj � jMBj, and �A and �B are the angles between
one of the easy-axis directions and each antiferromag-
netic sublattice magnetization. In this model it is assumed
that all magnetizations and anisotropies are confined
within the plane of the interface.

Using Eq. (1), magnetic hysteresis loops can be calcu-
lated by energy minimization as a function of applied
field H. The starting point for the first hysteresis loop is
the global energy minimum for the initial magnetic field.
This assumes that during the field-cooling process there
is enough thermal energy for the system to relax to the
lowest energy state. Figure 2 shows the simulated hys-
teresis loops for biaxial [Fig. 2(a)] and uniaxial
[Fig. 2(b)] anisotropy. The blue solid line shows the first
hysteresis loop, while the second one is shown by a red
dashed line. The parameters for both cases are jMFj �
jMAj � jMBj, JI � �JAF, K � �0:4JAFMAF, and the
field direction is 20
 with respect to one of the easy
axes. The result is very striking; while the biaxial sym-
metry case shows clear training effects, reproducing im-
portant features of the experimental data as discussed
below, the simulation with uniaxial symmetry shows no
difference between the first and second hysteresis loops.
Similar results are obtained for other orientations of the
easy axes and other values for the anisotropy or interface
coupling. It should be noticed that a net exchange bias for
the unixaial case or after training can be reproduced, if
an imbalance between the two antiferroamgnetic sublat-
tice magnetizations is assumed [4,22] (see also Fig. 1). For
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FIG. 2 (color online). Calculated hysteresis loops. (a) Biaxial
anisotropy of the antiferromagnet; (b) uniaxial anisotropy.
Shown are the first (solid line) and the second (dashed line)
hysteresis loop, which are in the case of uniaxial anisotropy (b)
identical. The circles indicate the fields for which the relative
orientation of the different magnetizations is shown in Fig. 3.
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FIG. 3 (color online). Orientation of magnetizations. Shown
are the ferromagnetic (dashed arrow) and each antiferromag-
netic sublattice magnetization (solid arrows) for saturation and
remanence during the first and half of the second hysteresis
loop. The solid lines indicate the directions of the antiferro-
magnetic anisotropy axes.
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example, such an imbalance may be caused by a domain
structure within the antiferromagnet [7].

Figure 3 shows the orientation of the various magneti-
zations close to saturation and in remanence during all of
the first and half of the second hysteresis cycle. In the
uniaxial case (lower row) the sublattice magnetizations
are always essentially antiparallel and along the easy
axis. However, in the biaxial case (upper row) the anti-
ferromagnetic sublattice magnetizations are initially per-
pendicular. Only after the first field reversal do the
antiferromagnetic sublattices relax into an antiparallel
arrangement. Immediately the question arises: Why are
the antiferromagnetic sublattices initially perpendicular
in the biaxial case? Because of the coupling of both
antiferromagnetic sublattices to the ferromagnet there is
an inherent frustration, similar to that found in geomet-
rically frustrated magnets [23]. The antiferromagnetic
coupling JAF prefers an antiparallel orientation of the
two antiferromagnetic sublattices, while the interfacial
coupling JI of each of the sublattices to the ferromagnetic
magnetization favors a parallel orientation of the two
sublattices, irrespective of the sign of JI. When JI is
comparable to JAF, this frustration results in energetically
favoring a perpendicular configuration of the antiferro-
magnetic sublattices. However, after the ferromagnetic
magnetization is reversed, the initial perpendicular ar-
rangement no longer reduces the frustration, and the
antiferromagnet then relaxes into a metastable anti-
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parallel configuration where it remains for subsequent
hysteresis loops. Only the application of a large field
exceeding the spin-flop field of the antiferromagnet
would recover the original perpendicular sublattice
configuration.

One important question is this: How sensitively does
the initial perpendicular arrangement depend on the
model parameters? For large biaxial anisotropy one can
determine the different lowest energy states as a function
of orientation � of the easy axis with the cooling field
HC. One can distinguish three cases:
0<
��������
JIMF �HC

JAFMAF

��������<
1

cos��� � sin���
; (3a)

1

cos��� � sin���
<

��������
JIMF �HC

JAFMAF

��������<
1� 2Ksin2�2��

JAFMAF

2� cos��� � sin���
; and (3b)

1� 2Ksin2�2��
JAFMAF

2� cos��� � sin���
<

��������
JIMF �HC

JAFMAF

��������: (3c)
For the case (3a) the global minimum occurs at the
antiparallel configuration, for (3b) the perpendicular con-
figuration is stable, and for (3c) the coupling of the
antiferromagnet to the ferromagnet and the cooling field
HC becomes strong enough to align the antiferromagnetic
sublattices. Only the boundary between (3b) and (3c) is
explicitly dependent on the magnitude of the anisotropy
(and is depicted in Fig. 4 for K � �0:4JAFMAF). A wide
range of parameters support the perpendicular configu-
ration as the global free energy minimum (see Fig. 4).
Notice also that even for very small values of K there is
still a large range of parameters that favor the perpen-
dicular orientation, namely, jJIMF �HCj � jJAFMAFj.
This is consistent with the fact that experimentally train-
ing effects are observed in diverse exchange bias systems.

A comparison between experimental data (Fig. 1) and
the simulated hysteresis loop (Fig. 2) shows that the
model reproduces several distinct features, namely, the
sharp jump at the first magnetization reversal and the
overall more symmetric second hysteresis loop. Even
better agreement between the experimental data and the
simulated hysteresis loops can be achieved by adding
an anisotropy parameter to describe the ferromagnet.
Room temperature measurements of the aforementioned
Co=CoO sample reveal a uniaxial anisotropy field.
Including such an uniaxial anisotropy in the numerical
simulation gives rise to hysteresis loops, which reproduce
main features of the experimental data surprisingly well
(see Fig. 1).

Neutron scattering from Co=CoO bilayers [8] has
shown that during the first reversal the Co layer develops
domains that are parallel or antiparallel to the applied
field, while in subsequent reversals the magnetization
rotates mostly perpendicular to the applied field. Simi-
lar behavior is observed in the simulated hysteresis loops.
During the first reversal, the ferromagnetic magnetization
097203-3
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FIG. 4 (color online). Phase diagram for initial configuration
of the antiferromagnetic sublattices after field cooling. For the
case of ferromagnetic interfacial coupling (JInt > 0), the arrows
indicate symbolically the orientations of the antiferromagnetic
sublattices with respect to the applied magnetic field H (rep-
resented by an arrow in the top left corner).
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remains almost antiparallel to the applied field, stabilized
by the net moment of the perpendicular configuration of
the antiferromagnetic sublattices. The relaxation of the
antiferromagnet into an antiparallel configuration, after
the ferromagnetic magnetization switches, results in an
easy axis for the ferromagnet that is perpendicular to the
antiferromagnetic sublattices due to spin-flop coupling
[24]. Thus, after the first reversal, the resulting ferromag-
netic easy axis is within 90� 45
 with respect to the
applied field.

Generally, training effects are most pronounced for
thin antiferromagnetic layers [10,19]. The role of the
antiferromagnet thickness becomes clear by looking at
the phase diagram in Fig. 4. With increasing antiferro-
magnet thickness, JAFMAF dominates over JIMF, and the
initial perpendicular arrangement of the antiferromag-
netic sublattices, which is necessary for the training
effects, is no longer energetically favorable.

It has been suggested that training effects are more
common for polycrystalline samples compared to single
crystalline antiferromagnets [2]. Again, the phase dia-
gram in Fig. 4 can explain this. Depending on the ratio
j�JIMF �HC�=JAFMAFj, the direction of the magnetic
field will determine the presence of training effects.
Thus more careful investigations of training effects as a
function of magnetic field orientation should be under-
taken for epitaxial systems.

The calculations presented in this work show that
irreversible training effects in exchange coupled antifer-
romagnetic/ferromagnetic systems may be determined by
the inherent frustration of the interface and the symmetry
of the antiferromagnetic anisotropies. Therefore it should
inspire further investigations of irreversible effects and
thus enable a better understanding of the role of symme-
try in the coupling of magnetic heterostructures.

This work was inspired by questions from Ivan K.
Schuller and benefited from many useful discussions
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