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The accidental degeneracy of various ground states of a fully frustrated XY model with a honeycomb
lattice is shown to survive even when the free energy of the harmonic fluctuations is taken into account.
The reason for that consists in the existence of a hidden gauge symmetry between the Hamiltonians
describing the harmonic fluctuations in all these ground states. A particular vortex pattern is selected
only when anharmonic fluctuations are taken into account. However, the observation of vortex ordering
requires relatively large system size L � Lc * 105.
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A fully frustrated XY model can be defined by the
Hamiltonian

H � �J
X
�ij�

cos�’j � ’i � Aij� ; (1)

where J > 0 is the coupling constant, the fluctuating
variables ’i are defined on the sites i of some regular
two-dimensional lattice, and the summation is performed
over the pairs of nearest neighbors �ij� on this lattice.
The nonfluctuating (quenched) variables Aij � �Aji
defined on lattice bonds have to satisfy the constraintP
Aij � 
 �mod 2
 � (where the summation is per-

formed over the perimeter of a plaquette) on all pla-
quettes of the lattice.

For two decades such models (on various lattices) have
been extensively studied [1] in relation with experiments
on Josephson junction arrays [2], in which ’i can be
associated with the phase of the superconducting order
parameter on the i-th superconducting grain, and Aij is
related to the vector potential of a perpendicular mag-
netic field, whose magnitude corresponds to a half-
integer number of superconducting flux quanta per lattice
plaquette. Planar magnets with odd number of antiferro-
magnetic bonds per plaquette [3] are also described by
fully frustrated XY models. Recently, the active interest
in fully frustrated Josephson arrays has been related to
their possible application for creation of topologically
protected quantum bits [4].

The ground states of the fully frustrated XY models are
characterized by the combination of the continuous U�1�
degeneracy (related with the possibility of the simulta-
neous rotation of all phases) and discrete degeneracy
related with the distribution of positive and negative
half-vortices between the lattice plaquettes. Since vorti-
ces of the same sign repel each other, the energy is
minimized when the vorticities of the neighboring pla-
quettes are of the opposite sign. In the case of a square
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lattice this requirement is fulfilled for all pairs of neigh-
boring plaquettes when the vortices of different signs
form a regular checkerboard pattern [3]. Analogous pat-
terns, in which the vorticities of the neighboring pla-
quettes are always of the opposite sign, can be
constructed in the case of a triangular lattice [5].

In the case of a honeycomb lattice it is impossible to
construct a configuration in which the vorticities are of
the opposite sign for all pairs of neighboring plaquettes.
As a consequence, the discrete degeneracy of the ground
state turns out to be much more developed [6,7], and can
be described in terms of formation of zero-energy domain
walls in parallel to each other [8], the residual entropy of
the system being proportional to its linear size. Quite
remarkably, the comparison of the free energies of weak
fluctuations in two different periodic ground states shows
that in harmonic approximation they are exactly equal to
each other [8], although the spectra of fluctuations ��k� in
these states are essentially different: for example, for
small momenta k they are characterized by different
values of (anisotropic) helicity moduli.

In the present Letter we demonstrate that this absence
of degeneracy lifting is not a simple coincidence, but a
consequence of a hidden gauge symmetry between the
Hamiltonians of harmonic fluctuations in different
ground states, and extends itself to all states formed by
some sequence of parallel zero-energy domain walls.
Therefore, the inclusion of harmonic fluctuations will
not lead to removal of the accidental degeneracy even if
instead of considering thermodynamic fluctuations, one
calculates the free energy of quantum fluctuations at
arbitrary (or zero) temperature.

This gauge symmetry is broken when anharmonicities
are taken into account. We have compared the leading
anharmonic contributions to the free energies corre-
sponding to different ground states and have found which
of these states is selected at low temperatures. However,
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the difference between their free energies turned out
to contain extremely small numerical coefficients. As
a consequence, the observation of vortex ordering is
possible only in relatively large systems (whose size
L � Lc * 105).

We believe that the discovery of these new features
(some of which are completely unexpected) makes our
results of interest not only in relation with Josephson
junction array physics, but also in the more general con-
text of two-dimensional statistical mechanics.

Figure 1(a) shows a structure of the simplest ground
state of the fully frustrated XY model with a honeycomb
lattice. Each arrow corresponds to �ij � ’j � ’i � Aij �

=4, whereas on the bonds without arrows, �ij � 0. In
this state the plaquettes with positive and negative vor-
ticities form straight stripes, so in the following we shall
call it a striped state.

A striped state allows for formation of domain walls
(separating two different realizations of such state) which
cost no energy [8]. An example of such zero-energy
domain wall is shown in Fig. 1(b). An arbitrary number
of zero-energy domain walls separated by arbitrary dis-
tances can be introduced into the system in parallel to
each other [8].
(a)

(b)

(c)

FIG. 1. Three different ground states of a fully frustrated XY
model with a honeycomb lattice: (a) striped state, (b) zero-
energy domain wall, and (c) zig-zag state. Directed arrows (or
their absence) correspond to �ij � 
=4 (�ij � 0). Lattice pla-
quettes with positive vorticities are shaded.
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If such domain walls are created at every possible
position, another periodic ground state is obtained, which
is shown in Fig. 1(c). In accordance with the shape of the
lines formed by the plaquettes with positive and negative
vorticities in this state we shall call it a zig-zag state.
Alternatively, one can describe all other ground states as
obtained by the introduction of zero-energy domain walls
on the background of a zig-zag state.

If all sites of a honeycomb lattice are numbered by
pairs of integers �n;m� as shown in Fig. 2, the
Hamiltonian describing the harmonic fluctuations in the
striped state of Fig. 1(a) can be written as:

H�2�
a �

1

2

X
n

X
m�n�mod2�

�J1�un;m � vn;m�1�
2

�J2�un;m � vn�1;m�
2 � J3�un;m � vn�1;m�

2	 ; (2)

where J1 � J2 � J cos�
=4�, J3 � J, whereas un;m and
vn;m are the deviations of the variables ’ from their
equilibrium values on two triangular sublattices forming
a honeycomb lattice.

If one assumes the presence of periodic boundary con-
ditions in the horizontal direction and open boundary
conditions in the perpendicular (vertical) direction, the
introduction of plane waves with respect to the variable n
allows to rewrite Eq. (2) as:

H�2�
a �

1

2

Z dq
2


X
m

fJS�jum�q�j2 � jvm�q�j2	

�J1�um�1�q�v�
m�q� � c:c:	

��K�q�um�q�v�
m�q� � c:c:	g ; (3)

where JS � J1 � J2 � J3 and K�q� � J2 exp��iq� �
J3 exp�iq�. A trivial gauge transformation:�

um�1�q�
vm�q�

�
) exp�i��q�m	 �

�
~um�1�q�
~vm�q�

�
; (4)
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FIG. 2. The numbering of a honeycomb lattice sites by a pair
of integers �n;m� used when writing Eq. (2).
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where ��q� � arg�K�q�	, allows then to replace Eq. (3) by
the analogous expression with K0�q� � jK�q�j substituted
for K�q�.

Note that in the chosen mixed representation, the only
modification of the Hamiltonian which appears when an
arbitrary sequence of horizontal domain walls is intro-
duced consists in replacement of K�q� by K��q� for some
values of m. It is rather evident that the gauge trans-
formation analogous to Eq. (4) (in which ��q�m should
be replaced by ��q�

P
m0<msm0 , where variable sm � �1

describes the choice between the two options existing for
the continuation of a ground state at each m) allows to
transform any such Hamiltonian to the same form (with
K�q� replaced everywhere by K0�q�).

This means that for the boundary conditions described
above, the whole set of eigenvalues will be exactly the
same for all Hamiltonians obtained by the introduction of
an arbitrary sequence of horizontal domain walls (even
for a finite sample). Accordingly, the free energy of the
harmonic fluctuations will be exactly the same, and can-
not be the source for the selection of a particular ground
state.

Clearly, the free energy of harmonic fluctuations also
remains degenerate when one considers a quantum gen-
eralization of the same model with the diagonal mass
term, which in terms of a Josephson junction array,
corresponds to taking into account the self-capacitance
of each superconducting island [9]. In order to include
into consideration the mutual capacitances of neighboring
islands (that is, the capacitances of the junctions), one has
to apply the same approach (construction of the gauge
transformation which makes all the coefficients real) not
to the harmonic part of the Hamiltonian, but to the
frequency dependent Fourier transform of the harmonic
contribution to Euclidean Lagrangian, which also turns
out to be possible. That means that in the quantum version
of the model, the accidental degeneracy survives (at the
harmonic level) for arbitrary relation between the self-
capacitance of an island and the capacitance of a junction.

If one assumes now periodic boundary conditions in
the vertical direction (instead of open boundaries), the
degeneracy of the free energy associated with harmonic
fluctuations (quantum or thermodynamic) will be man-
ifested only in the thermodynamic limit.

The accidental degeneracy of different ground states is
removed when anharmonicities are taken into account.
The leading contribution to the free energy induced by
anharmonic fluctuations, Fanh, is given by the sum of two
terms, which in the classical limit can be written as
F�3� � �h�H�3�	2i=2T and F�4� � hH�4�i, where H�3� and
H�4� are, respectively, the third- and the fourth-order
corrections to the harmonic part of the Hamiltonian.

Since each term in F�4� depends only on local phase
difference on a particular bond, it can be proven with the
help of the hidden gauge symmetry discussed above that
in the considered system, F�4� is the same for all ground
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states. However, this property does not extend itself to
F�3�, which depends also on more distant correlations.

Comparison of the expressions for F�3� in the two
different periodic ground states shows that the main con-
tribution to  F � F�3�

zig�zag � F�3�
str (normalized per single

hexagon) can be written as

 F � �6�G3
s �G3

z�J2�=T; (5)

where J� � J sin�
=4�=6, whereas

Gs � h�un;m � vn�1;m��un�1;m�1 � vn�2;m�1�i (6)

and

Gz � h�un;m � vn�1;m��un�1;m�1 � vn;m�1�i (7)

are two correlation functions (for the bonds with j�ijj �

=4), calculated with the help of the harmonic
Hamiltonian in striped and zig-zag states, respectively.

Numerical calculation of the corresponding inte-
grals over Brillouin zone gives Gs � 0:1559 T=J and
Gz � �0:1686 T=J, which after substitution in Eq. (5)
leads to  F � $T2=J, where $ � 0:8� 10�4. Addition to
Eq. (5) of the terms associated with more distant pairs of
bonds leads only to a slight reduction of the numerical
coefficient to $ � 0:7� 10�4.

Thus we have demonstrated that  F / T2, as in the
case of the antiferromagnetic XY model with a kagomé
lattice [10,11]. In situations, when a so-called ‘‘order-
from-disorder’’ mechanism [12] works already at the
harmonic level, the free energy difference between the
accidentally degenerate ground states of frustrated XY
models is proportional to the first power of T [13–16].

The fluctuation induced free energy (per unit length) of
a zero-energy domain wall on the background of a striped
state [see Fig. 1(b)] is also given by  F. It has been shown
in Ref. [16] that in the frustrated XY-models with acci-
dental degeneracy which manifests itself in the possi-
bility of formation of zero-energy domain walls, the
temperature of the phase transition associated with vortex
pattern disordering (that is, with the proliferation of such
walls) can be estimated as

Tc � EK= ln�Tc= F�Tc�	 ; (8)

where EK � J is the energy of a kink on a domain wall
and  F�T� is the fluctuation induced free energy of a
domain wall (per unit length). For $� 10�4 the logarith-
mical factor in Eq. (8) is close to 12, which means that the
extreme smallness of  F�T� in the considered problem
leads to the reduction of Tc (in comparison with EK) by 1
order of magnitude.

However, the extreme smallness of  F�T� manifests
itself much more strongly in the relative prominence of
the finite size effects. For  F�T� � $T2=J the (nor-
malized) probability to have a domain wall crossing a
finite system of the width L can be estimated as
exp���$T=J�L	 and is much smaller than 1 only for
L � Lc � J=$T, which in our case gives Lc * 105.
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This means that although anharmonic fluctuations in
the fully frustrated XY model with a honeycomb lattice
lead to the existence of a thermodynamic phase transition
(related with vortex pattern ordering) at not too small
temperature Tc � 10�1J, the sizes of Josephson junction
arrays available experimentally, as well as the sizes of the
systems which can be simulated in numerical experi-
ments, are currently not sufficient for observation of
this ordering.

To conclude, in the present Letter we have demon-
strated that the fully frustrated XY model with a honey-
comb lattice is the first example of a statistical model
in which the accidental degeneracy of different ground
states is not removed by the free energy of harmonic
fluctuations (neither in the classical nor in the quantum
version of the model), although in different states these
fluctuations are described by different Hamiltonians.
The responsibility for that can be traced to a hidden
gauge symmetry, which manifests itself when these
Hamiltonians are rewritten in terms of the mixed
representation.

We also have shown that accidental degeneracy is re-
moved by the free energy of anharmonic fluctuations,
which leads to the selection of a striped state of the
type shown in Fig. 1(a). The state with analogous vortex
configuration is selected as well in a fully frustrated
superconducting wire network with honeycomb geometry
(in the vicinity of the phase transition), but for entirely
different reasons related with the possibility of the order
parameter modulation [17].

However, the estimates based on numerical calculation
of the anharmonicity induced domain wall free energy
show that the system size (L � 105), which is required
for the observation of vortex ordering in the fully frus-
trated XY model on a honeycomb lattice is much larger
than those which are typical for experiments or numerical
simulations, which makes the observation of such an
ordering rather problematic. It should be emphasized
that although the considered model with a honeycomb
lattice has been the subject of Monte Carlo simulations of
Shih and Stroud [7,18], these authors have not analyzed
the structure of vortex pattern. In the experimental situ-
ation, the magnetic interactions of currents in a Josephson
junction array will be of greater importance for the
stabilization of a particular vortex pattern than the an-
harmonic fluctuations.

The ideas developed here may also be extended to other
geometries under current investigations. One of the most
intriguing systems in this respect is the fully frustrated
XY model on a dice lattice, which exhibits a similar
degeneracy between its classical ground states [19], and
has been the subject of recent experiments [20] and
numerical simulations [21]. In particular, one of the
main reasons for the absence of vortex ordering in mag-
netic decoration experiments of Ref. [20], as well as in
numerical simulations of Ref. [21] is very likely to be a
not sufficient system size.
097003-4
The conclusion on relative prominence of finite size
effects (leading to the destruction of long range order) in
situations when the stability of a vortex pattern is induced
only by anharmonic fluctuations is applicable to even
wider classes of models. Their number includes the anti-
ferromagnetic XY model with a kagomé lattice [10,11,22],
in which, in the thermodynamic limit, the anharmonic
corrections to free energy lead to the stabilization of so-
called

���
3

p
�

���
3

p
state at T < Tc � 10�4J [11]. However,

the estimates analogous to those performed above allow
one to conclude that the observation of such an ordering is
possible only when L � Lc � 107, that is, only in truly
macroscopic systems. In numerical simulations of
Ref. [22], this condition definitely was not satisfied.
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