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Subcritical Statistics in Rupture of Fibrous Materials: Experiments and Model
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We study experimentally the slow growth of a single crack in a fibrous material and observe stepwise
growth dynamics.We model the material as a lattice where the crack is pinned by elastic traps and grows
due to thermally activated stress fluctuations. In agreement with experimental data we find that the
distribution of step sizes follows subcritical point statistics with a power law (exponent 3=2) and a
stress-dependent exponential cutoff diverging at the critical rupture threshold.
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FIG. 1. Time versus crack length for a single experiment
showing crack jumps and crack arrest. Inset: The average time
to reach L (10 experiments with F�270N and Li�1cm). The
dotted curve is obtained from integration of Eq. (1) [9].
Understanding fracture in solid materials is paramount
for a safe engineering design of structures, and many
efforts are still needed to obtain a better physical picture.
A puzzling observation is the slow rupture of a material
when loaded with a constant external stress below a
critical threshold. Then, the delay time before rupture
(or lifetime of the material) strongly depends on the
applied stress. Thermodynamics has slowly emerged as
a possible framework to describe slow rupture since early
experiments have shown temperature dependence of life-
time with an Arrhenius law [1,2]. Statistical physics
models assuming perfect elasticity have recently pro-
posed several predictions for lifetime [3–8] as well as
for the average dynamics of a slowly growing crack [9].
Efforts are also made to describe slow rupture dynamics
from rheological properties of the material such as vis-
coelasticity and plasticity [10,11].

To be able to distinguish between various theoretical
descriptions, more experimental work is needed. We
present in this Letter an experiment on slow crack growth
in a fibrous material. We have observed that the crack
grows by steps of various sizes whose distribution is
rather complex and evolves as a function of the crack
speed. This behavior can be explained modeling the
material as an elastic square lattice where the crack is
pinned by elastic traps and adapting the model presented
in [9] to describe thermally activated growth of the crack
in an energy landscape with multiple metastable states.
The model predicts statistical distribution of step sizes in
very reasonable agreement with the experiments and has
the typical functional form obtained for subcritical point
statistics. We stress that the material heterogeneity ap-
pears in the model only as a characteristic mesoscopic
length scale. The effect of disorder in the material prop-
erties and the rheological behavior have not been explic-
itly included in this simple model.

The experimental system we consider is a two-
dimensional sheet with a macroscopic initial crack sub-
mitted to a constant load. This geometry is very useful to
follow the crack advance using direct observation, while
this would be difficult in a three-dimensional geometry
0031-9007=04=93(9)=095505(4)$22.50 
because a roughening instability of the crack front line
usually occurs. We have used a sheet of fax paper (width
w � 21 cm, length 24 cm, thickness e � 50 �m) for
which a natural mesoscopic length scale is the fiber
size. Scanning electron microscopy has revealed a size
distribution of fibers between 4 and 50 �m, with an aver-
age 20 �m. In order to obtain reproducible results, the
fax paper was kept in a controlled low level humidity at
least one day at ’ 10%, and also during the experiment
at 5%. In these conditions, the paper Young modulus is
Y � 3:5 GPa. The paper sheet is mounted on a tensile
machine with both ends attached with glue tape and rolled
several times over rigid tubes. The crack is initiated at the
center of the sheet using a calibrated blade. The force F
applied to the sample by the tensile machine is measured
by a force gage and is perpendicular to the crack direc-
tion, which corresponds to a crack opening in a mode I
configuration. During an experiment, the crack grows
and a feedback mechanism keeps F constant with a
precision 0:1 to 0:5 N and a typical time response
10 ms. As a consequence, the stress amplitude at the crack
2004 The American Physical Society 095505-1
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tip increases due to stress concentration effects and the
motion of the crack accelerates. A high resolution and
high speed digital camera (Photron Ultima 1024) is used
to follow the crack growth. Image analysis is performed
to extract the length of the crack projected on the main
direction of propagation. Although the crack actually
follows a sinuous trajectory, its projected length gives
the main contribution to the stress intensity factor which
measures the amplitude of stress divergence near the tip
and verifies K / �

���
‘

p
, with � the external constant stress

applied to the sheet and ‘ the projected crack length. The
stress � is estimated from F and the area A of a cross
section of the sheet, A being approximatively constant:
� � F=A. Because of the small thickness of the paper a
slight buckling occurs, but it has been shown that the
scaling with stress and crack length is not significantly
modified [12]. On the other hand, finite width corrections
on the stress intensity factor have been taken into account:
K � g�‘=w��

���
‘

p
with g�‘=w� � ��w=‘� tan��‘=2w��1=2

[13].
A typical growth curve is shown in Fig. 1. It clearly

appears that the crack does not grow smoothly: essen-
tially, there are periods of rest where the crack tip does
not move and periods where it suddenly opens and ad-
vances of a certain step size s. We have extensively
studied the growth varying the initial crack length (1<
‘i < 4 cm) and the applied force (140<F < 280 N),
equivalent to an initial stress intensity factor Ki between
2:7 and 4:2 MPam1=2. The resulting measured lifetime
varied from a few seconds to a few days depending on the
value of the applied stress or the temperature. Even for
the same experimental conditions (same stress, initial
crack length, and temperature) a strong dispersion in
lifetime was observed as expected in a model of ther-
mally activated growth [9]. Furthermore, the average
growth dynamics shows an exponential approach of life-
time in good agreement with the model (see inset) [9].
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FIG. 2. Probability distribution of step sizes for various val-
ues of stress intensity factor. Choosing � � 50 �m, the differ-
ent curves are the best fits of Eq. (3) giving an average value
V � 5	 1 �A3.
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Results from the average dynamics are detailed else-
where. Here, we want to study more extensively the step
size statistics.

It is commonly observed that the crack velocity is an
increasing function of the stress intensity factor K. Thus,
it is natural to look at the step statistics for a given value of
K. In practice, the step size distributions have been ob-
tained for various ranges of K. Figure 2 shows the step
size distributions determined from all the data we have
collected using a logarithmic binning. Typically, 700 data
points are used to obtain each distribution. Two regimes
are observed. For small step sizes, the distribution does
not depend on the value of K, while for larger step sizes
there is a cutoff size increasing with K. In practice, the
toughness of the material, i.e., its critical stress intensity
factor Kc � 6:5	 0:05 MPam1=2, has been obtained as
the value of K beyond which the probability to detect a
jump vanishes.

The behavior observed for the step size distributions
can be predicted using minimal physical properties. Let
us assume that the material is mainly elastic but that there
is a scale at which the material becomes discontinuous. In
a perfect crystal, the only such scale would be the atomic
scale, but in a fibrous material like paper, we have an
intermediate mesoscopic scale, the typical fiber size. The
elastic description of a material at a discrete level leads to
a lattice trapping effect [14] with an energy barrier that
has been estimated analytically [15]. To get a physical
picture of the trapping in our geometry, we have modeled
numerically a 2D square lattice of linear springs where
the crack corresponds to a given number of adjacent
broken springs as described in [9]. The lattice is loaded
with a constant force, and we estimate the minimum
increase in potential energy needed to bring the first
spring at the crack tip at the breaking threshold. This
energy is obtained by applying an external force on the
spring at the crack tip and computing the change in
FIG. 3. Sketch of the Griffith potential energy EG as a func-
tion of crack length ‘ with constant applied stress (solid line).
The energy barriers EC and the discretization scale � are
represented by the dashed curve.
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elastic energy of the whole lattice as well as the work done
by the constant force at the boundaries. We find an energy
barrier per unit volume: Ec ’ ��c 
 �m�2=2Y, where Y is
the Young modulus, �c the material stress threshold for
rupture, and �m�<�c� the equilibrium local stress at the
crack tip estimated at the discrete scale �, i.e., �m �

K=
����
�

p
. To each position of the crack tip corresponds a

different value of the energy barrier since the stress at the
tip increases with the crack length. Once the spring
breaks, the crack moves by at least one lattice spacing
�. The equilibrium potential energy of the whole system
is given by the Griffith energy per unit thickness of the
sheet [16]: EG � E0 
 �‘2�2=4Y � 2�‘, where � is the
surface energy. In Fig. 3 we schematically represent the
energy barrier of trapping and the Griffith energy. In
agreement with a previous analysis [15], we find that the
crack length ‘c at which the energy barrier becomes zero
is about twice the Griffith length ‘G where the equilib-
rium potential energy reaches its maximal value.

In order to model crack rupture as a thermally activated
process, we recall first ideas that were presented in [9].
Because of thermal noise at finite temperature T in a fixed
volume V, there are statistical stress fluctuations �f
around the equilibrium value �m with a Gaussian distri-
bution: p��f� / exp�
��f 
 �m�2V=2YkBT�. The mate-
rial will break if the stress fluctuation �f becomes larger
than the threshold �c with a probability: P��f > �c� �R
1
�c
p��f�d�f. Assuming the rupture process is irrevers-

ible, the velocity v of the crack tip is set proportional to
the probability P��f > �c� which gives

v �
�
#0

Z 1

Uc

e
UfdUf����������
�Uf

p ; (1)

where Uf � ��f 
 �m�2V=2YkBT, Uc � Uf��f � �c�,
and #0 is an elementary time scale (typically, an inverse
vibrational frequency). Integration of Eq. (1) gives the
average growth curve in inset of Fig. 1.

We extend now this model to describe thermally acti-
vated and irreversible motion of a crack in the rugged
potential energy landscape introduced above. Below ‘c,
the energy barriers Ec��m� trap the crack in a metastable
state for an average time #p depending on the barrier
height. Irreversible crack growth is a very reasonable
assumption when ‘ > ‘G since the decrease in equilib-
rium potential energy makes it more likely for the crack
to open than to close. When a fluctuation �f occurs, it
increases locally the free energy per unit volume by
Ef��m� ’ ��f 
 �m�2=2Y (this comes from a Taylor ex-
pansion of the bulk elastic free energy in agreement with
the numerical estimate of Ec and the Gaussian form of the
stress fluctuations). The energy Ef can be used by the
crack to overcome the barrier. If there are no dissipative
mechanisms, the crack will grow indefinitely when ‘ >
‘G as the barriers get smaller and smaller and the release
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of elastic energy helps to reach a more energetically
favorable position. We introduce a simple mechanism of
crack arrest assuming that after overcoming the energy
barrier the crack loses an energy identical to the barrier
size and does not gain any momentum from the elastic
release of energy (experimentally, dissipation comes from
acoustic wave emissions, viscous or plastic flow, etc.).
When the crack reaches the next trap, it still has an
energy Ef 
 Ec which might be sufficient to overcome
the next barrier. For a given fluctuation energy Ef, the
crack typically has enough energy to overcome a number
of barriers n � Ef��m�=Ec��m� and makes a jump of size
s � n� [the decrease of Ec��m� with �m during a jump of
size s has been neglected]. The probability distribution for
Ef is explored at each elementary step #0, while the
probability distribution of step size is explored after
each average time #p spent in the trap. In order to relate
the two probabilities, we express the mean velocity in a
different way as the ratio of the average step size to the
average trapping time:

v �

R
1
� sp�s�ds
#p

: (2)

From the identity between Eqs. (1) and (2), and the
normalization condition of the probability [

R
1
� p�s�ds �

1], we obtain the probability distribution:

p�s� � N�Uc�

����
�

p
e
s=(

2s3=2
; (3)

where N�Uc� � �e
Uc 

����������
�Uc

p
erfc�

������
Uc

p
��
1 and ( �

�=Uc. We find a power law with an exponent 3=2 and
an exponential cutoff with a characteristic length (
��c 
 �m�


2 diverging at the critical stress �c.
Incidently, we note that this probability has a form simi-
lar to subcritical point probability distributions in perco-
lation theory [17]. From Eq. (3), we can compute from
this distribution the first and second order moments:

hsi � N�Uc�
�

����
�

p

2
������
Uc

p erfc�
������
Uc

p
�; (4)

hs2i � N�Uc�
�2

����
�

p

4U3=2
c

 
erfc�

������
Uc

p
� � 2

������
Uc
�

s
e
Uc

!
: (5)

We obtain two asymptotical behaviors. When the rela-
tive energy barrier is high (Uc � 1), hsi ’ � and hs2i ’
�2. In this limit, there is only one step size possible.When
the relative energy barrier becomes low (Uc � 1), we
predict a divergence at critical point: hsi  ��c 
 �m�
1

and hs2i  ��c 
 �m�
3. Then, the crack velocity is ex-
pected to be dominated by the critical divergence of crack
jumps.

To compare with our experimental data, we use an
estimate of the stress near the crack tip by assuming as
above that �m � K=

����
�

p
. In addition, the normalization
095505-3
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FIG. 4. The mean and cubic root of the second order moment
of step sizes is well reproduced by the model [Eqs. (4) and (5)]
plotted with � � 50 �m and V � 5 �A3.
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condition of the distribution actually reduces the model to
one parameter, the ratio V=�2. In our model, � represents
the mesoscopic scale of discretization in paper. Setting
� � 50 �m, V is the only unknown. One parameter fits of
step size distributions in Fig. 2 for each range of stress
intensity factors give very robust results: V � 5	 1 �A3.
To check the asymptotic limit close to the critical point,
we have plotted in Fig. 4 hsi and hs2i1=3 as a function of
Kc=�Kc 
 Km�. Here, the first and second order moments
have been computed from the raw measurements in a
given range of K. Because it requires less statistics to
estimate the first two moments of the distribution than the
distribution itself, we are able to narrow the width of the
K range for each data point without changing the global
trend. The solid lines represent the model prediction using
the fitted value of V from the distributions of Fig. 2. Not
only does the model reproduce reasonably well the evo-
lution of the step size distributions with �m (V is essen-
tially constant and all the other parameters are fixed), but
the asymptotic divergence of the first two moments of the
distribution are also well reproduced. For the mean step
size, the scaling is observed up to K values very close to
Kc (1%). In the model, we see that the ratio of the second
order moment over the first order moment is diverging at
Kc. Thus, close to Kc, the second order moment becomes
more inaccurate than the measure of the mean.

The value obtained for the volume V is at the atomic
scale (V1=3 ’ 1:7 �A). Its small value gives an idea of the
microscopic scale at which the thermodynamical stress
fluctuations have the proper amplitude to trigger rupture
in our model. It should be realized that the model actually
predicts a lower limit for this microscopic scale. First, it
assumes a strong dissipation of energy during crack ad-
vance since none of the elastic release of energy is used to
keep the crack moving. This is certainly an overestima-
tion of a real dissipative mechanism, would it be visco-
elastic or plastic. Decreasing dissipation in the model
permits larger steps of the crack. In order to obtain the
same experimental velocity, the trapping time must also
be larger which will happen if the rupture occurs at a
larger microscopic scale. Second, disorder in the material
properties has been completely neglected. It has been
shown recently that disorder effectively reduces the en-
ergy cost for breaking, and this also permits rupture at a
larger microscopic scale [8]. Further theoretical work
needs to be done to introduce a more realistic dissipative
mechanism and takes into account disorder in the mate-
rial properties. As the model stands now, we believe that it
should apply to any elastic materials for which a structure
at a mesoscopic scale exists. For example, it would be
interesting to understand if the model can explain crack
jump dynamics observed in semicrystalline polymers
[18]. To conclude, we have shown that a simple model of
thermally activated crack dynamics is able to reproduce
095505-4
with good accuracy the step size distribution of the crack
growth. This is quite interesting because it may open new
perspectives in the description of rupture as a thermally
activated process.
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