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Nonlinear Optical Beam Interactions in Waveguide Arrays
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We report our investigation of Kerr nonlinear beam interactions in discrete systems. The influence of
power and the relative phase between two Gaussian shaped beams was investigated in detail by
performing numerical simulations of the discrete nonlinear Schrodinger equation and comparing the
results with experiments done in AlGaAs waveguide arrays. Good agreement between theory and

experiment was obtained.
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The nonlinear interaction between waves is a ubiqui-
tous phenomenon in wave propagation. In continuous
media it has led to the production of harmonics in optics,
acoustics, plasmas, etc. [1]. An incredibly rich field has
been nonlinear optics because nonlinear effects are read-
ily accessible with the powers available from lasers and
because the samples and the conditions for experiments
can be controlled precisely [2]. As a result, the nonlinear
interaction in bulk media (homogeneous in two dimen-
sions) and guiding geometries (homogeneous in one di-
mension) such as fibers, slab waveguides, etc. are very
well understood both experimentally and theoretically
[2,3]. Numerous unique nonlinear waves, like solitons,
with fascinating properties not available in linear media
have also been predicted and observed [4,5]. For 1D Kerr
spatial solitons, for example, the local nonlinear refrac-
tive index distribution created by a beam of finite width
and high intensity (I) in a self-focusing medium (An =
n,I) leads to a concave shaped phase-front and self-
focusing of the beam [4,5]. This effect arrests beam
spreading due to diffraction resulting in robust nonlinear
eigenmodes, i.e., solitons. This beam localization can
occur in space and/or time, or both [4,5].

One- or two-dimensional discreteness in optical media
has recently been shown as a way to control both disper-
sion and diffraction [6]. The equivalent of diffraction has
been demonstrated in arrays of weakly coupled channel
waveguides. The mechanism is the coupling between two
adjacent waveguides due to the evanescent field from one
waveguide overlapping in space its neighboring wave-
guides. Neighboring waveguides are locally excited
with a phase shift of 7/2 which leads in certain limits
to diffraction phenomena unique to discrete systems. If
only a single channel is excited, the resulting ‘“diffrac-
tion” pattern is peaked at the extremities and exhibits a
minimum in the middle, in sharp contrast to diffraction
in homogeneous media where the beam spreads but keeps
approximately its “bell”” shape [7]. When many discrete
channels are excited with the same phase, the diffraction
pattern associated with a “continuous’” medium is recov-
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ered. For intermediate number of channels, the diffrac-
tion is intermediate between these two limits, and can
appear ‘“‘square-wave’ like, for example.

In arrays made from nonlinear media, this spreading of
optical power throughout an array can be arrested by
optically changing the local coupling conditions between
channels [8]. The propagation constant is higher in the
channel with larger intensity which affects the inter-
channel coupling efficiency via a non-7/2 relative phase
accumulation. Similar to continuous systems, this leads to
stable solitons also in discrete systems [5]. This phenome-
non was predicted to occur in Kerr, quadratic, and pho-
torefractive media and indeed experimental verifications
have recently appeared [8—13]. However, these discrete
systems form a nonintegrable system, even in one-
dimensional arrays composed of Kerr nonlinear media,
and have many different properties when compared to
their continuous counterparts [5].

Since diffraction, especially for highly localized
beams, is different in arrays than in continuous media,
this will change the efficiency and nature of nonlinear
interactions. For example, the directional sideways dif-
fraction will increase the interaction between initially
separated beams while maintaining a high local inten-
sity. This contrasts with the interaction between initially
strongly localized beams in homogeneous media whose
peak intensity drops rapidly with distance. To date,
although the interaction between waves guided in discrete
1D systems has received limited theoretical attention [5],
[14-16], no experiments have been reported. In this
Letter we report the first observation of discrete beam
nonlinear interactions in any system. Specifically, we
have investigated the interaction between two parallel
beams and its dependence on the relative phase and input
power in a one-dimensional array of channel waveguides
exhibiting Kerrlike nonlinearity.

Consider two co-polarized elliptical beams to be fo-
cused at normal incidence onto the entrance facet.
Assuming that there is no coupling to leaky modes in
the underlying film or the radiation fields in the substrate,
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the propagation of radiation in the 1D nonlinear wave-
guide array can be modeled by the discrete nonlinear
Schrodinger equation (DNLS) [5,8].

.da,
i
dz

Here, a, is the peak amplitude of the field in the nth
channel, C is the coupling coefficient between the nearest
neighbor channels n + 1 and n — 1, and y is the self-
phase modulation nonlinear coefficient, averaged over the
field distribution of an individual channel. The distance
required for complete transfer between two adjacent iso-
lated channels due to evanescent field overlap is 7/2C.
The initial field is written as

a,(z=0) = Ilf(n = n) + f(n+ n,)expliAp)] (2)

where f(n) is the envelope function of the individual
beam, n; + n, is the separation of the beams, the center
of the array is the n = 0 channel, and A¢ is the initial
phase difference between the beams.

Equation (1) was numerically evaluated for the con-
ditions of our experimental setup. We assumed a Gaussian
shaped excitation field with n, = n; = 2 and a full width
at half maximum (FWHM) of 1.6 channels. Continuous
wave (cw) input beams were assumed. The array itself
consists of sets of 101 identical, parallel, AlGaAs channel
waveguides. Such arrays have been used previously to
demonstrate scalar discrete bright solitons for near nor-
mal incidence and self-defocusing near the edge of this
periodic structure’s Brillouin zone [9,17]. The array sam-
ple was 4.0 mm long, with a channel separation D =
10 um and a coupling constant C = 715 m™!, corre-
sponding to an effective sample length of 1.9 coupling
lengths. The propagation losses were measured to be
1.5 dB/cm. The nonlinearity n, has been measured pre-
viously to be self-focusing Kerr (n, > 0) for photon en-
ergies just below one half the semiconducting band gap
with small multiphoton absorption [18]. From the non-
linear refractive index and the effective mode area, a
nonlinear coefficient y = 5 m~!'W~! is found.

The variation at the output with input power, shown at
three phase angles in Fig. 1, exhibits three distinct re-

+ C(an+1 + an—l) + ’)’|an|20n =0. (1)

gimes. The linear regime (I) is dominated by discrete
diffraction which depends on the relative phase between
the input beams, similar to interference in homogeneous
media. Discrete self-focusing occurs over a narrow power
range (region II), producing one or two narrow beams,
depending on the relative phase. In region III, at high
powers, the two input beams become self-trapped primar-
ily in their center excitation channels.

These predictions were tested experimentally. The rele-
vant details of the experimental geometry are shown in
Fig. 2. The light source was a Spectra Physics OPA-
800CP which produced 1.1 ps FWHM pulses at a 1 kHz
repetition rate. The signal beam from the OPA was split
into two beams and shaped using cylindrical lenses to
form two elliptical spots at the input surface of the
sample. Translation and rotation of mirror M allowed
adjusting the position and angle of the second beam
relative to the first. The input power distribution for the
incident beams is shown in the inset of Fig. 2. The inputs
had a center-to-center separation of 40 um (correspond-
ing to four channels), and a measured FWHM of
16.5 pwm (hence, only three channels were significantly
excited). The spatial intensity distribution at the sample
output was observed using a highly sensitive InGaAs line
camera and a vidicon camera. The InGaAs camera al-
lowed observation over a large dynamic range on a single
shot basis while the 2D vidicon camera was necessary for
alignment purposes. The input power of one beam and the
total output power was monitored using germanium pho-
todiodes. The power of the second beam was adjusted to
have the same throughput as the first beam. The temporal
overlap of the pulses could be adjusted with a delay line in
either beam path and the relative phase between the
beams was varied using a piezoelectric actuator. The
partial overlap of the two beams resulted in about 3%
intensity modulation at the sample output.

The experimental outputs for intermediate and high
powers are shown in Figs. 3(a)-3(d) as a function of
phase difference. The results are striking. At intermediate
powers [Figs. 3(a) and 3(b)], the output is localized to a
few channels whose position varies linearly with the
phase difference and repeats every 2. At zero phase
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FIG. 1 (color online).
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cw calculations of the waveguide array output versus the total power for each input beam (assumed

Gaussian) at the relative phase angles of (a) A¢ = 0, (b) A¢p = 7/2, and (c) A¢p = 7. The powers are for the AlGaAs samples

investigated.
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FIG. 2 (color online). Experimental apparatus. Inset: Input
beam distributions (thick line) and waveguide modes (dotted
line).

difference, the input beams self-focus into a spot on the
zero channel (n = 0), similar to the slab waveguide case
[19,20]. As the phase angle is increased or decreased, the
spot moves in one direction (n > 0) or the other (n < 0),
respectively. In the slab case, there is a similar imbalance
for the interaction of two output solitons, but a significant
fraction of the input power always appears on the “weak”
side [20]. As |A | is increased, at around 77/2 and 37/2
phase difference, a small fraction of the energy begins to
appear on the opposite side of the strong beam. At A¢p =
7 the calculated output is split equally between two wide
beams displaced symmetrically about the zero channel,
again similar to the slab case. This unidirectionality of
the output is potentially useful as a beam scanner. As the
power is increased, the beams become progressively more
localized, the fraction of input energy on the “‘other” side
of the zero channel decreases, and the focusing into
primarily a single channel at the output extends to larger
|A ¢|. Here the central few channels correspond to spatial
solitons and are strongly localized. Increasing the input
power extends the range over which discrete solitons are
observed. In these regimes, the beam output position is
linear in the phase difference. These pulsed laser results
are in excellent agreement with the cw simulation shown
in Fig. 4(a).

The situation changes dramatically when the incident
intensity is increased yet again into response region III,
Fig. 3(c) and 3(d). The ““scanning” behavior disappears
and the output is strongly localized as discrete solitons in
each of the center channels of the initial excitation.
Changing the relative phase through multiples of 7 re-
sults in a periodic energy transfer from one localization
channel (for example, n,) to the other ( n;). The surprising
aspect is that there is essentially very little energy in other
channels, especially the ones intermediate to the two
discrete soliton channels. These results are in excellent
agreement with the simulation shown in Fig. 4(b), despite
the pulsed versus cw nature of the experiment and simu-
lations, respectively. Experiments at even higher input
powers exhibited strong multiphoton absorption.

In summary, we have reported the first investigation of
nonlinear optical interactions between two beams guided
in discrete waveguide arrays. For excitation of just a few
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FIG. 3 (color online). Array output versus relative phase at
four different peak input channel powers. (a) and (b) are in the
intermediate power region II (c) and (d) are in the high power

region III. Shown on the right is the output energy distribution
for each beam alone.

channels, the nonlinear effects are manifest at relatively
low input intensities. The output, including the forma-
tion of single discrete solitons, varies strongly with the
relative phase of the interacting beams. New phase-
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FIG. 4 (color online).
(c) shown in Fig. 3.

cw simulations for cases (b) and

controlled effects such as the scanning of strongly local-
ized beams across the array and switching between well-
separated channels containing discrete solitons were
observed.
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