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Ghost Imaging with Thermal Light: Comparing Entanglement and Classical Correlation
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We consider a scheme for coherent imaging that exploits the classical correlation of two beams
obtained by splitting incoherent thermal radiation. This case is analyzed in parallel with the configu-
ration based on two entangled beams produced by parametric down-conversion, and a precise formal
analogy is pointed out. This analogy opens the possibility of using classical beams from thermal
radiation for ghost imaging schemes in the same way as entangled beams.

DOI: 10.1103/PhysRevLett.93.093602

The ghost imaging technique [1-7] exploits the quan-
tum entanglement of the state generated by parametric
down-conversion (PDC) in order to retrieve information
about an unknown object. In the photon-counting re-
gime of PDC, the photons of a pair are spatially separated
and propagate through two distinct imaging systems. In
the path of one of the photons an object is located.
Information about the spatial distribution of this object
is obtained by registering the coincidence counts as a
function of the other photon position [1-3]. In the regime
of a large number of photon pairs, this procedure is
generalized to the measurement of the signal-idler spatial
correlation function of intensity fluctuations [4]. Such a
two-arm configuration opens the possibility of perform-
ing coherent imaging by using, in a sense, spatially inco-
herent light, since each of the two down-converted beams
taken separately is described by a thermal-like mixture
and only the two-beam state is pure [3,4].

In this Letter, we show that such a scheme can be
implemented with classical incoherent light, as the radia-
tion produced by a thermal (or quasithermal) source. A
comparison between thermal and biphoton emission is
performed in [7], where an underlying duality accompa-
nies the mathematical similarity between the two cases.
Here we consider a different scheme (Fig. 1), appropriate
for correlated imaging, in which a thermal beam is di-
vided by a beam splitter, and the two outgoing beams are
handled in the same way as the PDC beams in entangled
imaging. A precise formal analogy between the PDC and
the thermal case will emerge from our analysis.

Currently there is a debate whether quantum entangle-
ment is necessary to perform ghost imaging [3-6]. A
recent experiment [5] reproduced the results of a ghost
image experiment by using classically correlated beams.
However, the theoretical discussion in [5] suggested that,
although any single experiment in ghost imaging could
be reproduced by classically correlated beams, a non-
entangled source could not emulate the behavior of an
entangled source for all possible imaging schemes.
Similar conclusions were reached in [4], where, in par-
ticular, it was suggested that entanglement played a cru-
cial role in providing the ability to reconstruct both the
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image and the diffraction pattern of an object. In contrast
to this, we will show here that the spatial correlation of
the two beams produced by splitting thermal light,
although being completely classical, is enough to mimic
qualitatively all the features of entangled imaging, even
in ways which were not believed possible before.

For the sake of comparison, we will treat in parallel the
cases of entangled beams and of thermal light. For sim-
plicity, we ignore the time argument, which corresponds
to using a narrow frequency filter. We will come back to
this point in the final part of the Letter. In addition, we
assume translational invariance in the transverse plane.

In the entangled case, the signal and idler fields are
generated in a type II y® crystal by a PDC process. Our
starting point is the input-output relations of the crystal,
which in the plane-wave pump approximation read [4,8,9]

bi(§) = Ui(§)a,(G) + Vi(§)al (=), i#j=12
(D
Here b;(g) = f%e‘ié'fbi()?), where b;(X) are the signal

(i =1) and idler (i = 2) field envelope operators at the
output face of the crystal (distinguished by their orthogo-
nal polarizations), X being the position in the transverse
plane. a; are the corresponding fields at the input face of
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FIG. 1. Correlated imaging with incoherent thermal light.
The thermal beam a is split into two beams which travel
through two distinct imaging systems. Arm 1 includes an
object. BS is a beam splitter, D; is a pointlike detector, D, is
an array of pixel detectors, and v is a vacuum field.
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the crystal and are in the vacuum state. The gain func-
tions U;, V; are, for example, given in [8].

In the thermal case, we start from the input-output
relations of a beam splitter:

b(X) = ra(x) + tv(%), by(X) = ta(X) + rv(X), (2)

where t and r are the transmission and reflection coeffi-
cients of the mirror, a is a thermal field, and v is a vacuum
field uncorrelated from a. We assume that the thermal
state of a is characterized by a Gaussian field statistics, in
which any correlation function of arbitrary order is ex-
pressed via the second order correlation function [10]:

. dgq
(@' @at@) = [ 5
where (n(g))y, is the mean value of the photon number in
mode g in the thermal state, and we assumed translational
invariance of the source. In particular, the following
factorization property holds [10]:

(:af(®a@)at(@)aF@") ;) = (a’ (B)a(®)Xat (@)aF"))

+at (R)a@")Xal (F")a(¥)),
“)

where :: indicates normal ordering. In both the PDC and
the thermal case, the two outgoing beams travel through

two distinct imaging systems, described by their impulse
|

A 107 T )

response functions &y, i, (see Fig. 1). Arm 1 includes an
object. Beam 1 is detected either by a pointlike detector
D, or by a “bucket’” detector [3], in any case giving no
information on the object spatial distribution. On the
other side, detector D, spatially resolves the light fluctu-
ations, as, for example, an array of pixel detectors. The
fields at the detection planes are given by

i) = [ dEm(E hE) T LG, =12 6)
where L, L, account for possible losses in the imaging
systems, and depend on vacuum field operators uncorre-
lated from by, b,. Information about the object is ex-
tracted by measuring the spatial correlation function of
the intensities detected by D and D,, as a function of the
position X, of the pixel of Dj,:

(L(x)L(F)) = <C;r(551)C1(551)C;r (X)er(%2)).  (6)

All the object information is concentrated in the correla-
tion function of intensity fluctuations:

G(X), %) = [ (X)DL(X) — (LGIUL(RL), (D

where (I;(%;)) = (c;f()?,-)c,-()'c’i)) is the mean intensity of the
ith beam. Since ¢; and c;f commute, all the terms in
Egs. (6) and (7) are normally ordered and L, L, can be
neglected, thus obtaining

Gy 7o) = [ dz, f dz! [ 47, f ARYHT Gy, F G, T o oG, )[BT Gy (F)bT (R ba(7)

— (BT Eby (RN by ()]

®)

In the thermal case, by taking into account the transformation (2) and that v is in the vacuum state, b; and b, in Eq. (8)
can be simply replaced by ra and ta. Next, by using Eq. (4), we arrive at the final result

G()_C)l, )-6)2) = |rt|2

2
f dz! ] ARy, 7)) ho G ) at (@) | )

On the other hand, also in the PDC case the four-point correlation function in Eq. (8) has special factorization

properties. As it can be obtained from Eq. (1) [8],

(BT (&))by (%)bI ()b (F)) = (BT (&))b1 (R)XBT (E)ba () + (BT ()BT F))N b1 (¥))ba (). (10)

By inserting this result into Eq. (8), one obtains

2
Gy, %) = | f i, [ AR, 3y, 3Gy, )by EDbaE) | (10

where, by using relations (1),
> > dﬂ—]) iG-(¥ —3) > >
(b, (x))by(35)) = fmeq UG Va(—g). (12)

There is a clear analogy between the results in the two
cases. Apart from the numerical factor |r#|> and the
presence of A7 instead of A, the second order correlation
(at(#)a(¥')) and the function (n(§)), play the same role in
Eq. (9) as the correlation functions (b;(X)b,(X')) and
U,(§)V,(=¢g) in Eq. (11). Most importantly, in both
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Egs. (9) and (11) the modulus is outside the integral, a

feature that ensures the possibility of coherent imaging
via correlation function (see, e.g., [3]). The correlation
function (af(¥)a(¥')) governs the properties of spatial
coherence of the thermal source [10]. The correlation
length, or transverse coherence length [ ., is determined
by the inverse of the bandwidth Ag of the function
(n(g))n. The same holds for the correlation
(b (X)b,(x')), and the function U,(g)V,(—¢g) in the en-
tangled case.
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Let us now analyze two paradigmatic examples of
imaging systems [4]. In both examples the setup of
arm 1 is fixed and consists of an object, described by a
complex transmission function 7(X), and a lens located at
a focal distance f from the object and from the detection
plane. Hence, h (X, X}) o exp(—ixX; - X|k/f)T(X'), with k
being the field wave number. In arm 2, a single lens
(identical to the other one) is placed at a distance z from
the source and from the detection plane.

In the first example, we assume z = f, so that
hy(Xy, X)) o exp(—iX, - Xk/f). By using Egs. (9) and
(3), we obtain, for the thermal correlation function,

G(X), %) o Kn(=%k/ N T1E — FDK/ AP, (13)

where T(§) = [4£¢71*T(X). This has to be compared
with the result of the entangled case [see Eq. (7) of [4]],
where the combination X, + ¥; appears instead of X, —
X1, and U,V, instead of (n);. The object diffraction
pattern |7(§)|> can be reconstructed in both cases, pro-
vided I, is small compared to the characteristic length
scale of the object [,. Best performances of the scheme
are achieved for spatially incoherent light, /.., — 0. The
condition [y, < I, implies that no information about the
diffraction pattern can be retrieved by direct detection of
the intensity distribution in arm 1.

In the second example, we set z =2f, so that
hy (X5, X)) = 8(%, + %) exp(—ik|X,|>/2f). Inserting this
into Eq. (9),

G(X), Xp) &

i, o o L
f L n(@NaTGk/f — e | (14)
a

~ (G k/ alPIT(=5), (15)

where in the second line [, <[, was assumed, so that
(n(g))y, is roughly constant in the region of the g plane
where the diffraction pattern does not vanish, and it can
be taken out from the integral in (14). In this example the
correlation function provides information about the im-
age of the object. A similar result holds for the case of
entangled beams [see Eq. (8) of [4]].

Our results appear surprising, if one has in mind the
case of a coherent beam impinging on a beam splitter,
where the two outgoing fields are uncorrelated, i.e.,
G(X,, X;) = 0. However, when the input field is an intense
thermal beam, i.e., the photon number per mode is not too
small, the two outgoing field are well correlated in space.
To prove this point, let us consider the number of photons
detected in two small identical portions R (*“‘pixels’”) of
the beams in the near field immediately after the beam
splitter, N; = [, d)'c’b;f()'c’)bi()'c’), i=1,2, and the differ-
ence N_ = N; — N,. Making use of the transformation
(2), it can be proven that, for |r|> = |¢|> = 1/2, the vari-
ance (ON2) = (N2) — (N_)? is given by

(8NZ) = (Ny) + (Na), (16)
which corresponds exactly to the shot noise level. On the
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other side, by using the identity (SN2) = (SN3) +
(8N3) — 2(8N,8N,) and taking into account that
(8N?) = (6N32) for |r|> = |t|?, the normalized correlation
is given by

def <5N15N2> <N1>

c=E 0 o .
SN JoN2) (oN?)

For any state, 0 < |C| = 1, where the lower bound corre-
sponds to the coherent state level, and the upper bound is
imposed by Cauchy-Schwarz inequality. For the thermal
state, provided that the pixel size is on the order of /.,
(8N?) = (N;) + (N;)?, so that the correlation (17) never
vanishes. For thermal systems with a large number of
photons, (N)/(8N?) < 1, and C can be made close to its
maximum value (see [11] for more details). Even more
important, it is not difficult to show that Eqgs. (16) and (17)
hold in any plane linked to the near field plane by a
Fresnel transformation, in the absence of losses [11]. In
particular, a high level of pixel-by-pixel correlation can
be observed in the far-field plane. Notice that, although C
can be made close to 1 by increasing the mean number of
photons, the correlation never reaches the quantum level,
as shown by Eq. (16).

For the entangled PDC beams, spatial correlation is
present both in the near-field and in the far-field, with the
ideal result (SN2) = 0, C = 1 in both planes [8]. In [4]
we analyzed the effect of replacing the pure PDC en-
tangled state with two nonentangled mixtures that exactly
preserve the spatial signal-idler quantum correlations,
either in the far field or in the near field. It turned out
that with each mixture either the z = f result or the z =
2 f result could be exactly reproduced, but the whole set of
the results could not. The two beams generated by split-
ting thermal light are instead imperfectly correlated both
in the near field and in the far field. However, by using
intense thermal light, the classical intensity correlation is
strong enough to reproduce qualitatively the results of
both the z = f and the z = 2f configuration.

When comparing the performances of the classical and
quantum regimes, a key role is played by the issue of the
visibility of the information. This is retrieved by subtract-
ing the background term (I;(X;)){/,(%;)) from the mea-
sured correlation function (6) [see Eq. (7)]. A measure of
the visibility is given by V = G(%,, %,)/{I, (%), (%,)). A
first remark concerns the presence of (n(g))y, in Eq. (9) in
place of U,(¢q)V,(—¢q) in Eq. (11). As a consequence, in
the thermal case G(¥,, X,) scales as (n(¢))3, while in the
entangled case, it scales as |U,(q)V,(—q)|> = (n(q)) +
(n(g))*, where (n(§)) = [Vo(—g)|* = |V,(g)|* is the mean
number of photons per mode in the PDC beams, and
U@ =14 |Vi(§)]? (see, e.g., [8]). This difference is
immaterial when (n(g)) > 1, while it becomes relevant
for a small photon number, because the background
(I (X)X (X)) < {n(g))* is negligible with respect to
G(X, X;) « (n(q)). Hence, in the regime of single
photon-pair detection, the entangled case presents a
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(b) Them‘j“l configuration is represented by a better visibility.
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FIG. 2 (color online). Numerical simulation of the recon-
struction of the diffraction pattern of a phase double slit.
G(¥; = 0,%,) after 80000 shots is shown for (a) entangled
signal or idler beams from PDC and (b) classically correlated
beams by splitting the idler beam. (c) is T(¥,). Parameters are
those of a 4 mm Q-barium-borate crystal (I, = 16.6 um,
Teon = 0.97 ps). The pump waist and duration are 664 um
and 1.5 ps. xo = AgAf/2m.

much better visibility of the information with respect to
classically correlated thermal beams (see also [12]). A
second remark concerns the role of the temporal argu-
ment. Standard calculations [10] show that the visibility
scales as the ratio between the coherence time of the
source 7.y, and the detection time (see also [7]). Hence
a suitable source should present a relatively long coher-
ence time, as the chaotic light produced by scattering a
laser beam through a random medium [13]. As a special
example of a thermal source, one can consider one of the
two beams generated by PDC. Figure 2 is a numerical
simulation of the reconstruction of the diffraction pattern
of a phase double slit, T(x) = —1 inside the slits, T(x) =
+1 elsewhere, in the scheme z = f [14]. It compares the
use of signal or idler entangled beams and two classically
correlated beams obtained by symmetrically splitting the
idler beam. The parametric gain is such that the mean
photon number of beams b, and b, is the same in the two
simulations. This shows that the diffraction pattern of a
pure phase object can be reconstructed with incoherent
thermal light and that in the regime of high photon
number the quantum and classical correlation offer simi-
lar performances. More extended simulations not shown
here [11] confirm that, by operating only on arm 2, both
the diffraction pattern and the image of an object can be
reconstructed via the classical correlation of thermal
beams.

To conclude, the main result of this Letter is expressed
by Eq. (9). When compared to Eq. (11), it shows that the
results of correlation measurements performed on the
thermal beams can emulate those of the PDC beams,
provided that the thermal source coherence properties
are properly engineered. As it was already recognized
in other contexts (see, e.g., [15]), in the small photon
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Our results imply that it is possible to perform coherent
imaging without spatial coherence, which is reminiscent
of the Hanbury-Brown and Twiss interferometric method
for determining the stellar diameter [16]. However, here
we define a technique to achieve a full coherent imaging,
which, e.g., permits one to reconstruct the diffraction
pattern of a pure phase object (Fig. 2).

This work was supported by projects FET QUANTIM,
COFIN of MIUR, INTAS 2001-2097, and the Carlsberg
Foundation.

Note added—After our Letter was submitted [17], the
central result Eq. (9) found applications in the context of
x-ray diffraction [18].
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