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Aharonov-Bohm Effects in Entangled Molecules
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Molecules which are magnetic and conducting, if suitably entangled (e.g., catenanes and knots)
could exhibit Aharonov-Bohm effects which can be viewed as particular examples of a Berry phase.
The corrections to the quantum energy levels reflect the entangled geometry of the molecules and,
while small (they are proportional to the square of the fine structure constant), may be observable. We
illustrate these corrections for a number of catenated and knotted structures. For couplings between the
components of a catenane (link), the Aharonov-Bohm corrections are determined by integer-valued
linking numbers. For knots, the Aharonov-Bohm correction is proportional to the geometric writhe of
the knot.
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FIG. 1. A schematic of a catenane molecule. If one molecular
loop is magnetic and the other is conducting, the Aharonov-
Bohm effect will change the conduction electron energy levels.
If both loops are conducting and magnetic, the conduction
electron energies on each loop will be changed.
Three characteristics of long chain molecules (includ-
ing polymers or oligomers) are as follows: (i) Some form
entangled loops and knots [1],[2]. (ii) Some can be elec-
trically conducting [3]. (iii) Some have fairly large mag-
netic moments [4]. To simplify our treatment, we
speculate that in some cases dipole-dipole and/or spin-
orbit interactions orient the molecular magnetism parallel
to the molecular chain. In views (i), (ii), and (iii), we
consider the interplay between molecular magnetism and
conduction when the molecules are entangled or knotted.
Situations are described where the quantum-mechanical
Aharonov-Bohm effect changes the electronic energy
levels. Knotted or entangled mesoscopic systems could
also exhibit the effects we discuss here (with some mod-
ifications). Additional relationships between knots and
other physical effects, including electrostatics, fluid me-
chanics, gravity, chemical reactions, etc., are reviewed in
[5,6].

Our simplest example of the relations between conduc-
tion, magnetization, and knotted geometry is just a re-
statement of the Aharonov-Bohm effect, which can be
viewed as a particular example of a Berry phase [7].
Figure 1 shows two intertwined simple molecular loops
(catenanes in chemistry and the Hopf link in mathemat-
ics). Assume one of these loops is magnetic with its
magnetization aligned along the molecular chain (the
chain axis), and the other loop is an electrical conductor.

The electrons on the conducting loop are taken to be
free particles moving on a ring of length L. Ignoring
magnetic coupling, the quantum energy levels for the
electrons on the conducting loop are
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where m is the electron mass and n is any integer.
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When the loops are linked as is shown in Fig. 1,
magnetic effects change the physics. A magnetic flux �
produced by the magnetic molecule penetrates the plane
of the conducting loop. This introduces an additional
phase into the wave function of a conducting electron
[via the incorporation of the vector potential ~A into the
momentum operator ( ~p ! ~p� e ~A=c)]. This phase is as-
sociated with the Aharonov-Bohm effect. The resulting
single-electron energy levels become
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where

� �
I

~A� ~r1� � d~r1: (3)

Here d~r1 traces out the shape of the conducting loop.
The equivalence of this flux expression to the standard
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� �
R ~B � d ~a integrated over the surface bounded by the

conducting loop follows from ~B � ~r� ~A and Stokes
theorem [8].

To estimate the magnitude of the Aharonov-Bohm
correction to the electronic energies, the magnetization
per unit length on the magnetic loop is expressed in
atomic units. Thus the magnetic moment of an infinitesi-
mal length d~r2 of the magnetic loop is

d ~m2 � �
e �h=�2mc�

�h2=�me2�
d~r2; (4)

where e �h=�2mc� is the Bohr magneton and �h2=�me2� is
the Bohr radius. In these scaled units, the dimensionless �
could be of order unity, but examples from [4] suggest a
value somewhat less than unity.

The vector potential resulting from the magnetization
is obtained by treating each infinitesimal segment of the
magnetic molecular loop as a tiny magnetic dipole
aligned with the molecular loop axis. The total vector
potential is then obtained by summing over the infini-
tesimal magnets, giving the integral

~A�~r1� �
I �~r2 	 ~r1� � d ~m2

j ~r2 	 ~r1j
3 ; (5)

where this second path is defined by the geometry of the
magnetic molecular loop. Combining these results yields
the Aharonov-Bohm correction to the quantum number n
in the energy levels of Eq. (2),

e�
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� ��2�Lk�; (6)

where � � e2=� �hc�  1=137 is the fine structure constant
and
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is a ‘‘linking number’’ which characterizes the topology
of the system [9]. The squared fine structure constant
means Eqs. (2), (6), and (7) imply a very small
Aharonov-Bohm correction to the electronic energy lev-
els. However, such a small effect might be observable
because the breaking of the n ! 	n symmetry yields a
splitting of the excited state degeneracies. The detection
method will depend on the knot geometry. For the ex-
ample in Fig. 1, one could compare the fine details of
spectra with the rings coupled and uncoupled. In princi-
ple, larger effects could be obtained from analogous
mesoscopic systems.

Remarkably, the linking number of Eq. (7) is a topo-
logical invariant. It is the integer which specifies the
(signed) number of times the magnetic loop passes
through the plane of the conducting loop. The linking
number does not change if the loops are arbitrarily de-
formed, provided they do not intersect. Thus the
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Aharonov-Bohm energy correction does not depend on
the specific shapes of the linked molecular loops.

We next consider the case where both molecular loops
are simultaneously magnetic and conducting. There will
then be both interloop (one loop affecting the other) and
intraloop (one loop affecting itself) Aharonov-Bohm
corrections to the electron energies on each molecular
loop. We first describe the interloop effects. The symme-
try of the effect can be seen by rewriting Eq. (7) using the
properties of the triple product
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�
� �d~r1 � d~r2�: (8)

Letting n1 and n2 be the quantum numbers characterizing
the electrons moving on the two molecular loops, and
letting �1 and �2 characterize the magnetism on the two
loops, the Aharonov-Bohm effects for two planar loops
are

n1 ! �n1 � �2�2�Lk��; n2 ! �n2 � �1�2�Lk��: (9)

For each quantum number modification, one must use the
right-hand rule to obtain the correct sign. That is, a
negative n1 corresponds to current in loop #1 which
produces a magnetic field parallel to the magnetism
(from loop #2) which is threading it.

These interloop results extend to more complex geome-
tries, and the Aharonov-Bohm energy corrections are
additive. For example, three molecular loops entangled
as Borromean rings [10] would exhibit no Aharonov-
Bohm interloop energy shifts. (The rings are entangled,
but they do not thread each other.)

Finally, we consider the intraloop corrections to the
energy levels. For this aspect of the physics, we can
consider a single magnetic and conducting molecule
which has a complicated (perhaps knotted) shape. The
magnetic flux of a single molecular loop can penetrate
its own conducting path, leading to a self-induced
Aharonov-Bohm energy shift. The expression for the
intraloop Aharonov-Bohm shift is obtained using analo-
gous reasoning, giving

n ! �n� ��2�Wr��; (10)

where n and � refer to the conducting state and the
magnetism on the loop and

Wr �
1
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I I �
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is the (geometric) ‘‘writhe’’ of the knot [11]. The integral
for Wr is a double path integral over the single loop, and
the integration variables ~r and ~r0 are coordinates which
both trace out the geometry of the loop. Unlike the link-
ing number, this writhe is not a topological invariant but
depends on the detailed geometry of the loop. The writhe
Wr of Eq. (11) has the following characteristics:
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FIG. 2. If a conducting and magnetic molecule has the shape
of this trefoil, the electronic energy levels are shifted by an
Aharonov-Bohm term which is proportional to the writhe of
the trefoil knot.
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(i) For knots which lie nearly flat on a plane, Wr is the
difference between the number of ‘‘positive’’ and ‘‘nega-
tive’’ crossings [10]. In general, writhe is the average of
the difference between positive and negative crossings.
Here ‘‘average’’ means consider projections of the loop
onto an arbitrarily oriented plane, and average over all
planes.

(ii) Despite the apparent divergence associated with
1=j ~r1 	 ~r2j

3, Wr is not singular when the molecule is
‘‘smooth.’’

(iii) Wr is dimensionless and does not change with the
size of the molecule.

(iv) Wr vanishes for sufficiently symmetric molecules:
any molecular shape which can be transformed into itself
through translations, rotations, and a single inversion
have Wr � 0. This means all planar molecules are char-
acterized by Wr � 0, and thus there is no Aharonov-
Bohm correction to the electronic energy levels.

The ‘‘unknot’’ is characterized by Wr � 0 if it lies flat
in a plane, but if the unknot is twisted to form a ‘‘figure
eight,’’ then jWrj  1. Thus a magnetic and conducting
molecule need not be knotted to exhibit an Aharonov-
Bohm energy shift. However, positive and negative writhe
numbers are equally likely for the unknot and one would
expect fluctuations in the molecular shape to give a van-
ishing average for Wr. On the other hand, knotted mole-
cules of short length will have restricted geometries
which will produce a nonzero average Aharonov-Bohm
correction to the energy levels.

Molecular knots which are tightly wound can be ap-
proximated by ‘‘ideal’’ knots. Ideal knots have a nonzero
cross section and a minimum length. The Wr for a large
number of such ideal knots has been tabulated in articles
contained in [5]. For the simplest knot, the trefoil of
Fig. 2, these tables show jWrj  3:4 for the ideal trefoil.
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This is not a surprising value, since the simplest planar
trefoil projection shows three crossings of the same sign.
On the other hand, Wr  0 for the ideal figure eight knot
(or 41 knot or Listing’s knot), probably because this knot
can be transformed into its mirror image without being
broken.

The ideal trefoil exhibits somewhat unphysical kinks
in its shape, so we also considered the trefoil whose axis
lies on a torus. The axis of this knot is described by the
equations

x � �1� " cos�32��� cos���;

y � �1� " cos�32��� sin���; z � � sin�32��:
(12)

Our numerical calculations for the trefoil on a torus yield
jWrj � 3 for a wide choice of the parameters " and �.
The ideal trefoil on a torus (with minimum length for a
fixed width) is characterized by " � � � 0:448 [6]. For
this case, we obtain the not surprising value jWrj  3:42.

Aharonov-Bohm energy shifts are not the only physi-
cal consequence of knotted and entangled molecular
geometry. Earlier work showed that the trefoil described
by Eq. (12) has a nonzero optical activity [12] and esti-
mates of the relative scattering functions of catenanes and
trefoils are reviewed in [13].
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