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Universality of the Shear Viscosity from Supergravity Duals
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Kovtun, Son, and Starinets proposed a bound on the shear viscosity of any fluid in terms of its
entropy density. We argue that this bound is always saturated for gauge theories at large 't Hooft
coupling, which admit holographically dual supergravity description.
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One of the remarkable connections arising from hol-
ography has been the link between black hole thermody-
namics and the more traditional case on the field theory
side. By working with a black hole (or black brane)
background on the gravity side, this allows the investiga-
tion of the corresponding gauge theory at finite tempera-
ture. Such a connection alone has already yielded many
new insights into the thermal phase structure of gauge
theories. Of course, it is important to realize that basic
equilibrium thermodynamic quantities, such as the free
energy and entropy, do not provide complete information
about the theory. Nevertheless, with an exact anti—de
Sitter/conformal field theory (AdS/CFT) prescription, it
ought to be possible to provide dual descriptions of any
desired process in the gauge theory.

In practice, one does not expect to find a simple de-
scription encompassing all of the information of the
gauge theory. However, in keeping with thermodynamic
ideas, one would expect that the long-distance fluctua-
tions in the theory will have a hydrodynamic description.
In this manner, one may expand the study of gauge
theories at finite temperature to include, e.g., transport
phenomenon such as diffusion and sound propagation [1-
5]. Along these lines, Kovtun, Son, and Starinets (KSS)
[6] extended the previous results of [1-3] and investigated
the shear viscosity, 77, for a large variety of backgrounds.

In the examples of [6], which cover all maximally
supersymmetric gauge theories and /N = 2* gauge the-
ory (to leading order in m/T) [7,8], it was found that the
ratio of shear viscosity 7 to the entropy density s had a
fixed value, n/s = 1/47. On the other hand, weakly
coupled systems have 1/s > 1, and even common sub-
stances have ratios well above this value, which upon
reintroducing fundamental constants becomes
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Based on these observations, KSS conjectured that there
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is a universal bound in nature for this ratio, namely [6],
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It was further argued in [9] that this bound follows from
the generalized covariant entropy bound [10].

The intriguing result that n/s = 1/47 holds exactly
for many different nonextremal brane backgrounds sug-
gests that saturation of the bound (2) may always be true
for systems admitting a dual supergravity realization. In
this Letter, we demonstrate that this is in fact always the
case. Before doing so, however, we provide a brief review
of the hydrodynamics of strongly coupled systems and the
method for extracting n/s from the supergravity dual. We
then demonstrate that the bound (2) is saturated for N =
2* [Pilch-Warner (PW)] [7], Klebanov-Tseytlin (KT) [11],
and Maldacena-Nunez (MN) [12] gauge theory. This
finally leads us to the proof that the bound is always
saturated in strongly coupled gauge theories admitting a
supergravity dual. When the asymptotic supergravity ge-
ometry is flat, this result is directly related to the univer-
sality of the low-energy absorption cross sections for
black holes shown in [13].

Just as in thermodynamics, hydrodynamics is not con-
cerned with the microscopic properties of a theory, but
instead in its macroscopic ones. Overall, hydrodynamics
may be invoked to provide an effective description of
long-wavelength and long time properties of a macro-
scopic medium. Of particular interest is the study of
diffusion governing the flow of, say, heat or charge
through a medium. For a charge related to a conserved
current, its diffusion is governed by its local concentra-

tion, so that ]’= —D%jo. Combining this with current
conservation, 9,j° + V - j = 0, then yields the familiar

heat equation, d,/° = V - (DV°). As expected for a ther-
modynamic description, these equations are no longer
Lorentz invariant, and time reversal invariance is explic-
itly broken.
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While this is well known, its application to AdS/CFT is
perhaps less familiar. The important point here is that the
diffusion coefficient D is connected to the underlying
properties of the gauge theory. At the same time, tech-
niques have been developed to extract D from the fluctu-
ations of long-wavelength modes in the supergravity dual
[1-3,6]. So for strongly coupled gauge theories where the
dual is known, computation of D and other kinetic coef-
ficients yields additional insight on the nature of the
theory itself.

Of present concern is bulk transport through a me-
dium. Here, one works with energy, momentum, and pres-
sure, or, in other words, a conserved stress-energy tensor
with components 7%, T% and T". While the analysis is
similar to that of charge diffusion, additional complica-
tions arise from the tensor nature of 7#”. The resulting
hydrodynamic quantities of interest include the bulk vis-
cosity , shear viscosity 7, and the speed of sound v,.

In order to compute these kinetic coefficients from the
gravity dual, one may in principle extract the appropriate
behavior of the boundary stress tensor 7#”. Alternatively,
as demonstrated in [6], the shear viscosity may be ex-
tracted by setting up a ‘“‘shear perturbation” as a fluctua-
tion on top of the original supergravity background, given
by the metric

ds* = [G,(ndf* + G (rd*] + G..(rydr* +---, (3)

where the dual gauge theory has (7, X) coordinates, r is the
transverse coordinate, and the ellipses denote compact
directions which are not of direct concern in the follow-
ing. We take the metric to have a plane-symmetric horizon
(extending in p infinite spatial directions, X) located at
r — ry where G, vanishes. The decay of the shear mode is
then governed by a diffusion coefficient

— vV _G(rO) o dr _GttGrr
V _Gtt(rO)Grr(rO) o Gxx\/ _G’

denoted the shear mode diffusion constant in [6].
The shear viscosity, 7, is obtained from the diffusion
constant D according to [6]

“

D=—_=_2 (5)

Here €, s, P, and T are correspondingly the equilibrium
energy and entropy densities, the pressure, and the tem-
perature. As a result, the conjectured shear viscosity
bound, (2), is equivalent to the statement

C 4aT
This is the form that will be considered below.

We now compute the shear diffusion constant for a
class of backgrounds realizing supergravity duals to 4D
gauge theories with eight or fewer supercharges, namely,
the PW solution [7], the supergravity dual to the KT
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cascading gauge theory [11], and the N" = 1 MN solution
[12]. In all cases, we find that the KSS bound, (2), is
saturated.

N =2 gauge theory—The supergravity dual to
N = 2% SU(N) gauge theory was proposed in [7] and
its nonextremal deformation was studied in [8]. This
solution realizes the supergravity dual to N =4,
SU(N) gauge theory softly broken to N° = 2. The high
temperature thermodynamics of this system thus involves
a small parameter & = m/T, where m is the mass of the
N = 2 hypermultiplet, giving rise to the partial super-
symmetry breaking. It was observed in [6] that the KSS
bound is saturated in this system to leading order in &.
However, it actually remains saturated for arbitrary &.

To see this, we note that the relevant near-extremal 5D
Einstein-frame metric involves two functions A and B of
a radial coordinate r:

ds? = e*A(e?Bdi* + dx?) + dr. @)

The horizon is taken to be at r,,, = 0. One of the equa-
tions of motion is [Eq. (3.19) of [8]]

InB' + 4A + B = 4a + Iné, 8)

where « and & are constants specified by the near-horizon
asymptotics. This equation may be rewritten as

(623)I — 25640‘6_4A+B, (9)

in which case the shear diffusion coefficient may be
computed from (4)

+o00
DPW — €3A ] dre_4A+B
hor.J 0
+o00 1 1
— 34 d(e?B)—e™2=_—¢e7 (10
¢ hOJO (€P)35¢ 25¢ - (10

Since the black hole temperature is T = (5/2m)e® [8], we
conclude that Dpy = 1/47T, which generalizes the re-
sult of [6] to all orders in &.

KT gauge theory—The supergravity dual to N =1
cascading SU(N + M) X SU(N) gauge theory was pro-
posed in [11,14], and its nonextremal deformation was
studied in [15-17]. Following the notation of [17], the
relevant near-extremal 10D Einstein-frame metric in-
volves four functions, x, y, z, and w, of a radial coordinate
r and has the form

ds%OE = eX(e7d1? + e dX2) + e_zzdsé, an
dst = e'%dr? + > (dMs)>.

The exact form of (dM5)?, which depends on the function
w but whose volume is independent of w, is unimportant
for the present investigation. With this choice of radial
coordinate, the horizon is at r = +o0 and the boundary is
atr =0.
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The system of equations governing the solution leads to
the result x = ar, where a is a positive constant. The use
of (4) as well as this solution for x leads to the shear
diffusion coefficient

DKT — 65y+3x—21

hor a hor

(12)

Since the asymptotics of the solution at the horizon,
|

[bdy dre—Sar — ieSy+3x—21
hor 3

dslop = c1(r)*(A1de? + dx?) + ¢ (r)*a?ds?,

r— +oo, are z— —ar + z, and y — —ar + y, [17], we
find Dyt = (1/8a)e> 2%+, Comparing this to the black
hole temperature, T = (2a/m)e*>~>- [17], yields the re-
sult Dyr = 1/47T.

MN gauge theory—The supergravity dual to N =1
SU(N) gauge theory was proposed in [12], and its non-
extremal deformation was studied in [18,19]. Here we
follow [18], and write the near-extremal 10D Einstein-
frame metric as

(13)

dst=(Lyr)~2dr* + ;{h(r)(d@% +sin?0,d¢p7) + 1(d6} + sin*0,d ¢3) + %(dl// + cosf,d¢ + cosb,dp,)>.

Using this form of the metric, we compute

DMN = ashc§

bdy Al
/ dr 3 = a’hct
hor ./ hor Azclhr

1
horzAa4 .

(14)

bdy ]
hor]hor —2Aa4 d(A%) = aShc?

Note that we have made use of the equation of motion A A, = A/(c,(r)3h(r)r) [Eq. (5.55) of [18] ], where constant A is
the nonextremality parameter. In addition, /A| vanishes at the horizon and becomes unity at the boundary.
From the near-horizon behavior of the metric [Eq. (5.61) of [18]]

. c
dsyy = ¢ (rp)*(p?de? + di?) + - Ve

lg(rh)azhz(”h)

1
dn* + cl(rh)zaz[Z h(r,)(d6? + sin?6,d¢p?)

1 1
+ Z(d@% + sin?6,d¢p3) + Z(d¢ + cosfdp, + coshrdp,)? } (15)

we find T = (A/2m)(c,(r,)8ah(r,)) — 1. Comparing this
with (14), we find as expected Dy = 1/47T.

Hence we have found the common result that D =
1/47T for several nontrivial supergravity backgrounds.
In all cases, we have taken advantage of reducing the r
integral in (4) to a boundary term. This suggests that
saturation of the KSS bound is in fact universal, depend-
ing only on the thermal nature of the background
spacetime.

We now prove the universality of the shear diffusion
coefficient. First, observe that, for extremal backgrounds,
the Poincaré symmetry of the background geometry en-
sures that the longitudinal components of the stress tensor
can have only the form 7, ~ g,,(- - -). Next note that,
while turning on nonextremality involves modifications
to the metric as well as to the radial profile of matter
fields, this has no effect on the structure of T,,. In
particular, 77 — T¢ = 0 for both extremal and nonextre-
mal backgrounds. The Einstein equation then gives

R —R:=0. (16)

We now demonstrate that (16) is sufficient to evaluate (4),
regardless of the specific background.
Consider a D = d + p + g dimensional background

dsp, = QF()(g upy(V)dx*dx") + Q5(y)(8(2)apdz*dzP

+8()mndy™ dy"), (17)
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where g, is d dimensional, §,z is p dimensional, and
&mn 18 g dimensional. An explicit computation yields

Rup =1y — 80 2Q V2O, + (d — DQAVQ)?
+(D—d—-2)Q;'07'VQ,VQ,),

Rup = Fap = 8ap(Q5'V2Qy + (D — d = 3)Q;2(VQ,)?

+dQ;'07IVQ,VQ,), (18)

where V is covariant with respect to g,,,, and the Ricci
tensors r,, and 7, are computed from g,, and g.g,
respectively.

We now specialize to nonextremal renormalization
group flows of 4D gauge theories. Thus we take d = 1,
p =3, and g = 6 (so that D = 10) and furthermore set
Fuv = Fap = 0. A nonextremality warp factor A(r) may
be introduced by taking Q,(r) = Q,(r) A (r), where
these functions depend only on the radial coordinate of
&.n- For a nonextremal solution, we take the boundary
conditions

Ayry =0 AWPw=1  (19)

where the horizon is at r = ry and the boundary is at r =
0. In this case, the linear combination of Ricci compo-
nents, (16), gives rise to V> A +8Q;'VQ,VA = 0.
Assuming the radial dependence as above, this combina-
tion leads to a first integral
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dA _—1/2. _
- 3,8l = 4053, (20)

where A is an integration constant related to the tempera-
ture, as will be seen below. Here we have decomposed the
6D metric g,,, according to

gm)ay"dy" = g, dr’ + gsidy'dy’. (21
It is now easy to see that the expression (4) reduces to
- OT e
«/—Gn(r)Grr(r) hor.) r=ry 2A

1
= 54 V085 (ro). (22)

Furthermore, application of (20) near the horizon yields
dsty = Q5(ro)( — A%dr* + A72gs5(rg) Q3 (ro)d A?),
(23)

from which we can read off the temperature
A
T = -—gs(r)"'2Q;8(ry). (24)
21

Combining (22) and (24) finally yields D = 1/4#T, thus
proving that the KSS bound is always saturated in the
supergravity dual, at least to this leading order in
corrections.

Of course, as nature has demonstrated, the shear vis-
cosity bound, (2), is not necessarily saturated at weak
coupling. In fact, as pointed out in [6], for typical matter
(i.e., water under normal conditions) 47T > 1. This,
however, is not in contradiction with the above proof, as it
pertains only to supergravity backgrounds realizing holo-
graphic duals to gauge theories at large (strictly speaking
infinite) ’t Hooft coupling A = g%\N.

Although one cannot directly compare strong and
weak coupling results, we conjecture that

)
D=0

where f(A) is (in principle) a computable function of the 't
Hooft coupling, such that for arbitrary A, f(A) = 1, and
f(A) — 1, when A — oo. Since on the supergravity side
of the gauge/string correspondence, 't Hooft coupling
corrections translate into string theory a’ corrections,
verification of this conjecture would involve the study
of o' corrections to the hydrodynamics.

Realistically, this can be done for the near-extremal
D3-branes. In fact, using the KSS expression, (4), applied
to the a’-corrected metric of the near-extremal D3-branes
[20], we found that the bound (2) is violated:

(25)

DT = L(1 — 15y + O(v?)), (26)
47
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where y = 1£(3)(21)"%/2. We emphasize, however, that
this result assumes that the dispersion relation for the
low-energy gravitational shear perturbations which led to
the expression (4) is not modified by the o’ corrections.
This assumption is very likely incorrect, in which case
one would have to perform a complete analysis of the
metric fluctuations themselves. We hope to return to this
issue in the future.
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