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Scaling of Decoherence in Wide NMR Quantum Registers
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Among the most important parameters for the usefulness of quantum computers are the size of the
quantum register and the decoherence time for the quantum information. The decoherence time is
expected to get shorter with the number of correlated qubits, but experimental data are only available
for small numbers of qubits. Solid-state nuclear magnetic resonance allows one to correlate large
numbers of qubits (several hundred) and measure their decoherence rates. We use a modified magnetic
dipole-dipole interaction to correlate the proton spins in a solid sample and observe the decay of the
resulting highly correlated states. By systematically varying the number of correlated spins, we
measure the increase of the decoherence rate with the size of the quantum register.
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FIG. 1 (color online). Experimental scheme: The effective
Hamiltonian H�2 creates correlations between the spin qubits.
During t1, these coherences decay. The conversion step trans-
fers the coherence amplitudes into observable magnetization,
and the readout measures them as the amplitude of the FID.
Quantum information processing holds enormous po-
tential for some problems that cannot be solved efficiently
on classical computers. The most successful experimental
demonstrations of quantum computing so far were based
on liquid-state nuclear magnetic resonance (NMR),
where Shor’s algorithm was implemented on a 7-qubit
quantum computer [1], and on trapped ions, where a 2-
qubit Deutsch-Jozsa algorithm was realized [2]. First
prototypes of solid-state systems have also been demon-
strated (see, e.g., [3,4]). For these (and some other) sys-
tems, solutions have been found (or proposed) to fulfill
the basic requirements for the physical implementation of
quantum computing [5]. However, to become useful, all of
these systems must be scaled to significantly larger num-
bers of qubits. Possibly the largest obstacle to such an
increase in the number of qubits will be the decoherence,
which is expected to be faster in larger systems. To
achieve reliable operation of a quantum computer, it
must be possible to perform thousands of gate operations
before decoherence has destroyed the quantum informa-
tion [6].

For most proposed systems, figures of merit for these
numbers have been estimated (see, e. g. [7]). So far, all
these estimates are based on decoherence times that are
measured (if available) or estimated for individual qubits.
During any quantum algorithm, however, the information
that is stored in the quantum register is not localized in
individual qubits, but distributed over the whole quantum
register. Most of the relevant states involve correlations
and entanglement among a large number of (sometimes
all) qubits present in the system. It is generally expected
that the decoherence of such highly correlated states will
be faster than that of individual qubits. Up to now no
detailed theoretical predictions exist and no experimental
results are available that verify this behavior. The most
detailed experimental data available so far are from
NMR, where relaxation rates of individual spins are
routinely measured in liquids as well as in solids. For
many of these systems, relaxation rates can also be cal-
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culated with high precision. However, with few excep-
tions experimental as well as theoretical work has been
restricted to uncorrelated spins. Only a few experimental
data are available for correlated states of two-spin sys-
tems [8,9] and no experimental data exist about the decay
of large clusters of correlated spins.

In this Letter, we measure the decoherence rate for
highly correlated spin states and present initial data on
the scaling of the decoherence rate with the number of
correlated spins. While several schemes have been pro-
posed for scalable implementations of quantum informa-
tion processing on the basis of spins in solids [10–12],
these systems are not yet sufficiently advanced to perform
such measurements. On the other hand, for the measure-
ment of decoherence rates, the system does not have to
fulfill all the requirements that a real quantum computer
must satisfy. In particular, we can drop the requirements
of individual addressing of qubits for excitation as well as
for detection. This allows us to use solid-state nuclear
spins as qubits, which can be correlated through their
magnetic dipole-dipole interaction. We then measure the
decoherence rates of correlated spin clusters consisting of
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FIG. 2 (color online). Decay of coherence from highly corre-
lated spin states. The different data sets represent different
cluster sizes.
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up to 650 spins as a function of their size using solid-state
NMR multiple pulse techniques.

The measurements were performed on a system of
nuclear spins I � 1=2. In thermal equilibrium, its density
operator can be written as [13]

�eq � 1� �
X

i

Iiz; (1)

where the Iiz are the z components of the spin operators
and � is a temperature-dependent numerical constant on
the order of 10�5. The individual spins are thus uncorre-
lated and their relaxation is independent of each other.

As shown in Fig. 1, we create the highly correlated spin
states by letting the spin system evolve under a
Hamiltonian of the form

H �2 � �
1

2

X

j;k

djk�I
j
�I

k
� � Ij�Ik��; (2)

where djk is the dipole-dipole coupling constant and the
sum runs over all spins in the sample. Under the effect of
this Hamiltonian, the initial equilibrium spin state
evolves into

���� � e�iH
�2��eqeiH

�2� �
X

LMK

aLMKALMK: (3)

Here we expand the density operator in terms of irreduc-
ible tensor operators ALMK, where L, M are the rank and
order of the tensor operator, while K refers to the number
of correlated spins for the specific operator. Additional
quantum numbers, which would be required for complete
labeling, have been omitted for clarity. The individual
operators can also be written as products of spin operators
ALMK �

P
�c�I

i
�I

k
�Ilz . . . . As we show below, the experi-

ment creates measurable amounts of such correlated spin
clusters with several hundred spins.

After the creation of these states, we let them decay
under the influence of dipole-dipole couplings, which can
be represented by the Hamiltonian

H dd �
X

j;k

djk�3I
j
zIkz � ~Ij ~Ik�: (4)

Our experiment measures the decay of the coherence
amplitudes aLMK. We write this decay in the form

aLMK�t1� � aLMK�0�fLMK�t1�; (5)

where fLMK�t1� is the decay function in which we are
interested.

Since the operators ALMK are not directly observable,
we transfer the amplitudes aLMK�t1�, whose decay we
want to measure, into observable single spin magnetiza-
tion. This can be achieved by an evolution under the
operator

�H�2 � e�i��=2�IzH�2ei��=2�Iz ; Iz �
X

i

Iiz
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Both operators �H�2 are created as effective
Hamiltonians by a multiple pulse sequence that is applied
to the spin system [14].

After this conversion step, the nuclear spin polariza-
tion, which now contains the information about the co-
herence amplitudes, can be measured by applying a
resonant radio frequency pulse that converts the longitu-
dinal into transverse magnetization, and then measuring
the free induction decay (FID). The amplitude of the FID
is proportional to

sFID�t1� /
X

LMK

jaLMK�0�j
2fLMK�t1�: (6)

The decay of the coherence is traced out by repeating the
experiment for a sequence of decay times t1.

Experiments were performed on a home-built solid-
state NMR spectrometer operating at a 1H resonance
frequency of 360 MHz. For the spin system we used the
protons of a powdered adamantane sample. Figure 2
shows the observed signal as a function of the time t1.
The different data sets connected by lines correspond to
different pumping times �, as indicated by the legend in
the figure. The data show clearly that the decoherence
gets faster as the pumping time gets longer and the
number of correlated spins increases. For comparison,
the figure also includes the free induction decay signal
(solid line), which corresponds to the decay of uncorre-
lated spins. All of the highly correlated states are more
fragile than the uncorrelated qubits that are usually taken
as the reference.

In Fig. 2, the different data sets are labeled with the
average number 
K of correlated spins (qubits) that con-
tribute to the signal. To determine the average cluster size,
we used the technique developed by Baum et al. [14]: We
separated the different signal contributions to Eq. (6)
090501-2



FIG. 3. Size 
K of the effective quantum register as a function
of the pumping time �. The points represent experimental
values; the solid line is a guide to the eye. The two insets
show examples of the distribution of signal into different
coherence orders with half-width �.

FIG. 4. Increase of the decoherence rate for increasing size of
the spin clusters.

FIG. 5 (color online). Decoherence rates for different coher-
ence orders and different cluster sizes.
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according to the coherence order M. For this purpose, we
incremented the phase of the preparation pulse sequence
systematically. This results in phase shifts of the individ-
ual coherences that are proportional to the coherence
order M:

aLMK��� � eiM�aLMK�0�: (7)

The radio frequency phase � was incremented and the
measured signal was Fourier transformed with respect to
� to separate the signal contributions with different M.

Two of the distributions observed in this way are
shown in Fig. 3 as insets. Comparison shows that for
the longer pumping time (�2 � 600 �s vs �1 � 240 �s)
the distribution has become wider, with significantly
higher order coherences becoming excited. The cluster
size can be determined from the assumption that the
different coherence orders are excited with the same
probability [14], i.e. that the observed dependence of
the signal amplitude is directly proportional to the num-
ber of operators with the given coherence order,
n�K;M� � �2K�!

�K�M�!�K�M�! . For large K, the distribution ap-
proaches a Gaussian,

n�K;M� ! 4K�K���1=2e�M
2=K; (8)

with half-width � � 2
�����������
ln2K

p
. Fitting the signal ampli-

tude of each coherence order, sM /
P
LKjaLMK�0�j

2,
against the coherence order M, we obtain the cluster
size from the width � of the distribution. As Fig. 3 shows,
we found that the number of correlated spins increases
rapidly with the duration of the pumping time.

The dependence of the decoherence rate on the number
of correlated spins was obtained by repeating the mea-
090501-3
surements shown in Fig. 2 for increasing pumping times
�. For each pumping time, we determined the average
cluster size as described above and measured the deco-
herence rates as the inverse of the 1=e decay time.
Figure 4 shows the observed decoherence rates as a func-
tion of the number of correlated spins. As expected, the
decoherence rates increase with increasing cluster size.
The solid line, which is a fit to the function y � B

���
x

p
, is

meant to guide the eye.
The separation of the signal into different coherence

orders also allows us to measure the decay of the different
coherence orders individually. In Fig. 5, we compare the
decay rates of the various coherence orders for different
cluster sizes. Since the pumping Hamiltonian of Eq. (2)
090501-3
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contains only �2 quantum operators, the resulting spin
state contains only even order coherences. For these, we
analyzed the individual decay curves and determined
decoherence rates as above.

As Fig. 5 shows, the decay becomes faster with increas-
ing coherence order M. The behavior can be rationalized
by noting that each K-spin cluster contributes only to
signal components of order M  K. Higher order coher-
ences contain therefore higher signal contributions from
larger clusters, which are expected to decay faster. More
detailed characterization of the decay rates for individual
spin operators is possible by rotating the system around
two orthogonal axes [15]. While such an approach would
provide more detailed information about the spread of the
individual decoherence rates, the successful implementa-
tion of quantum computing depends only on the average
decay rate: During the execution of a quantum algorithm,
the information is repeatedly spread over almost the full
accessible Hilbert space. The resulting information will
therefore decay not at the decay rate of an individual
coherence, but at an average decoherence rate[16].

The experimental results presented here clearly dem-
onstrate the expected increase of the decoherence rate
with the number of correlated spins. This is in qualitative
agreement with the behavior that is expected for increas-
ing size of the number of qubits in a quantum register. The
increase that we observed in this case is clearly less than
linear in the number of qubits (see Fig. 4). If such a
behavior can be verified in different systems, it raises
the prospect for successful implementations of large-
scale quantum computers, which hinges primarily on
the relation between the decoherence rate and gate opera-
tion time. A linear increase of the decoherence rate with
the number of qubits would be expected if the perturba-
tions acting on the different qubits were completely un-
correlated. The slower increase therefore indicates that
the perturbations are correlated. Some degree of correla-
tion should be present in all physical systems that have
been considered for the implementation of quantum in-
formation processing. It will be interesting to check if the
observed proportionality of the decoherence rate to the
square root of the cluster size can be rationalized, e.g., by
statistical arguments or from scaling arguments involv-
ing the size of the cluster vs the average interaction with
its environment. We plan to address these issues experi-
mentally by varying the type of couplings and, possibly,
the effective geometry of the clusters. As discussed be-
fore, the scaling behavior can be optimized by appropri-
ately storing the quantum information in subspaces of the
Hilbert space [16].
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In the present system, the interaction between system
and environment is non-Markovian, as the clearly non-
exponential decay of the coherences shows. This is con-
sistent with different models of decoherence, such as the
spin-Boson model, over a wide parameter range [17]. In
useful quantum computers, we expect that the coupling to
the environment will be weak and the overall behavior
should be well approximated by a Markovian process. We
therefore plan to investigate the decay process with dif-
ferent types of interactions. This should be possible, in
principle, in solid-state NMR, where we can use multiple
pulse sequences to engineer suitable system-environment
interactions.
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