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Exactly Solvable Model of the BCS-BEC Crossover
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We discuss an integrable model of interacting fermions in one dimension that allows a complete
description of the crossover from a BCS- to a Bose-like superfluid. This model bridges the Gaudin-Yang
model of attractive spin 1=2 fermions to the Lieb-Liniger model of repulsive bosons. Using a geometric
resonance in the one-dimensional scattering length, the inverse coupling constant varies from �1 to
�1 while the system evolves from a BCS-like state through a Tonks-Girardeau gas to a weakly
interacting Bose gas of dimers. We study the ground state energy, the elementary density and spin
excitations, and the correlation functions. An experimental realization with cold atoms of such a one-
dimensional BCS-BEC crossover is proposed.
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Starting with the historic controversy between Bardeen
and Schafroth about the proper explanation of supercon-
ductivity [1], the crossover from a Bardeen-Cooper-
Schrieffer (BCS) superfluid with Cooper pairs, whose
size is much larger than the interparticle spacing, to a
Bose-Einstein Condensate (BEC) of molecules composed
of tightly bound fermion pairs has been a basic issue in
many-body physics [2]. Very recently, with the observa-
tion of molecular condensates near a Feshbach resonance
in cold atomic Fermi gases [3], this problem has regained
a lot of attention, since for the first time the crossover can
be studied in detail. While there is general agreement on
the fact that the evolution between the BCS and Bose
limit is continuous, all existing theories of the crossover
are approximate [4]. In particular, there is no reliable
description of the most interesting regime near the
Feshbach resonance, where the scattering length diverges.
It is therefore of considerable interest to have an analyti-
cally soluble model of the BCS-BEC crossover. This is
what we will provide in this Letter for the particular case
of one dimension (1D).

Cold gases allow us to realize the BCS-BEC crossover
by driving a mixture of two spin states with an attractive
interaction through a Feshbach resonance, beyond which
a bound state appears in the two particle problem in free
space. On the BCS side of the crossover, pairs exist only in
the many-body system due to the Pauli blocking of states
below the Fermi energy. In one and also in two dimen-
sions, the situation is quite different, however, because
any purely attractive interaction produces a bound state
already at the two particle level. In fact, contrary to the
3D case, its existence is both a necessary and sufficient
condition for a BCS instability [5]. As will be shown
below, an analog of the 3D crossover can be achieved in
1D by exploiting a confinement-induced resonance (CIR)
in a tight trap where the effective 1D scattering length
exhibits a resonance caused by the mixing with a closed
channel bound state in the trap [6].

We start by considering the Hamiltonian of the
Gaudin-Yang (GY) model [7] of a spin 1=2 Fermi gas
0031-9007=04=93(9)=090408(4)$22.50 
interacting via a short range potential g1��x�:

H � �
�h2

2m

XN
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@2

@x2i
� g1

X
i<j

��xi � xj�; (1)

whereN is the total number of fermions andm their mass.
The single dimensionless coupling constant is � �
mg1= �h2n, where n � N=L is the 1D density. For attractive
interactions, the Hamiltonian (1) describes a Luther-
Emery liquid [8]. When �! 0�, its ground state is a
BCS-like state with Cooper pairs, whose size is much
larger than the average interparticle spacing [9]. The
strong coupling regime with tightly bound molecules is
now simply reached by increasing the magnitude of �.
The resulting fermion pairs behave like a hard core Bose
gas, or equivalently like 1D noninteracting fermions [10].
In this manner, obviously, one never reaches a weakly
interacting BEC as one of the limits of the standard BCS-
BEC crossover in 3D. This is a consequence of the trivial
fact that the two-body potential g1��x� has a bound state
only when g1 < 0, but none when g1 > 0. As a result, in
the regime g1 > 0, the ground state of the Hamiltonian (1)
is that of repulsive fermions and thus has nothing in
common with a weakly interacting Bose gas of molecules.

A qualitatively rather different situation, however, is
found for 3D fermions confined in a quasi-1D geometry,
where their transverse degrees of freedom are frozen. We
assume the fermions to be trapped in a harmonic wave-
guide with radial frequency !?=2� and oscillator length
a? �

�����������������
�h=m!?

p
. Having a quasi-1D situation requires

that only the lowest transverse mode is occupied. As
shown by Bergeman et al. [11], the exact solution of the
3D two-body scattering problem in such a waveguide
always exhibits one and only one two-body bound state
with energy ~�b, whatever the 3D scattering length a.
Apart from this bound state, all the scattering properties
can be described by an effective 1D delta potential g1��x�
with strength [6]:

g1 � 2 �h!?a�1� Aa=a?��1: (2)

As naively expected, an attractive 3D interaction a < 0
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FIG. 1. Ground state effective energy per particle Eeff
0 =N �

E0=N � �b=2 [in units of the Fermi energy for the noninteract-
ing gas �F � �2 �h2n2=8m] as a function of 1=�.
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implies a negative value of g1, associated with a bound
state whose energy �b � �mg21=4 �h

2 coincides with the
exact bound state energy ~�b in the limit a=a? ! 0.
Remarkably, g1 and thus the binding energy �b remain
finite at a Feshbach resonance (a � 
1). Entering the
positive side a > 0, however, the vanishing of the de-
nominator at a?=a � A ’ 1:0326 [12] leads to a CIR,
where g1 jumps from �1 to �1 just as in a standard
3D Feshbach resonance, as discussed recently also in [13].
Now, for g1 > 0, the short range potential g1��x� no
longer has a bound state, however, it is still present in
the quasi-1D problem and its energy ~�b is always lower
than �2 �h!? [11].

For N interacting fermions in such a waveguide the
quasi-1D condition at zero temperature requires �h!? to
be much larger than the Fermi energy �F, or equivalently
�na?�

2 � 1. Therefore, after the CIR, the true bound
state energy ~�b is the largest energy scale in the problem,
implying that the corresponding molecules are unbreak-
able. The 1D analog of a Feshbach resonance driven BCS-
BEC crossover in 3D is therefore described by a modified
Gaudin-Yang model (1), where for positive g1 the short
range potential is supplemented by an additional bound
state with energy �b � �1. After crossing the CIR at
1=� � 0, the unbreakable fermion pairs are described by
a Lieb-Liniger (LL) model [14] of repulsive bosons. On a
formal level, the continuous evolution from an attractive
Fermi to a repulsive Bose gas in one dimension is implicit
in the Bethe ansatz equations of the GY and LL models.
The ground state for both � < 0 and � > 0 may be ob-
tained from the solution of the equations:

���k� � 1�
Z Q

�Q

dq
n

���q�

�2 � 
�k� q�=n�2
;

E0

N
�
�b
2
� 2
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�Q

dk
n
��k�

�h2k2

2m
;

(3)

where E0 is the ground state energy and the normalization
of ��k�, the quasimomenta distribution,

RQ
�Q dk��k� �

n=2 fixes the value of Q. For � < 0, they reduce to the
GY equations of an attractive Fermi gas while for � > 0,
they reduce to the LL equations of a gas of dimers [15].
This equivalence shows that in the whole regime � > 0,
the density of bosons is nB � n=2, their mass is mB �
2m, their coupling gB is identified with the one of the LL
model and � � mgB= �h2n. Since one is now dealing with
dimers, the relation between the coupling constant gB and
the experimentally accessible parameters a and a? is no
longer given by (2), however. It requires a solution of the
dimer-dimer scattering problem in the presence of a
transverse confinement. In the limit a� a?, one can
use the free space result for the effective scattering length
between point like dimers a3B � 0:6a [16], leading to
gB � 1:2 �h!?a. Close to resonance (a?=a * A), a plau-
sible ansatz is

gB �
���
2

p
�h!?a�1� Aa=a?�

�1: (4)
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It follows by assuming that an equation of the form (2)
holds also for dimers and the requirement that the reso-
nances match, while a? is reduced by a factor 1=

���
2

p
.

The qualitative physics of the modified Gaudin-Yang
model is now simple to understand: when 1=�! �1
(BCS limit), the system consists of weakly bound
Cooper pairs. The associated excitation gap is related to
the spin sector; i.e., there is a finite gap between the singlet
ground state and the first triplet excited state. In addition,
there are gapless density fluctuations describing the
Bogoliubov-Anderson mode of a neutral superfluid. At
resonance, when 1=� � 0, the system is a Tonks-
Girardeau gas [10] of tightly bound dimers [13]. It still
exhibits sound modes with a linear spectrum, however,
the spin sector has disappeared because the spin gap
diverges. On the positive side of the resonance, the system
is an interacting Bose gas of tightly bound molecules. Its
excitations are the standard Bogoliubov sound modes,
whose velocity vanishes asymptotically in the weak cou-
pling limit 1=�! �1 (BEC limit).

For quantitative results, we start with the ground state
where the number of up and down spins is identical. Sub-
tracting the bound state contribution, the relevant finite
quantity to consider is Eeff

0 � E0 � N�b=2, which we call
the effective ground state energy. This quantity is ob-
tained by numerically solving the Bethe ansatz Eqs. (3)
and is plotted as a function of 1=� in Fig. 1. Its asymptotic
behavior in the BCS [9] and BEC-limit [14] and near the
CIR is
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where �F � �2 �h2n2=8m is the Fermi energy for the
noninteracting gas. We note that on resonance
Eeff
0 � Eeff

0 �� � 0��=4.
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We now discuss the low energy elementary excitations.
First consider the density excitations (the ‘‘charge sec-
tor’’) which are gapless phonons with dispersion relation
! � vcjkj, when jkj ! 0. An effective theory is provided
by a Luttinger liquid description with charge velocity vc
and correlation functions described by the Luttinger pa-
rameter Kc [17]. When � < 0, K�F�

c describes fermionic
correlation functions and is obtained from K�F�

c � vF=vc
[18], where vF � � �hn=2m is the Fermi velocity of the
noninteracting gas. When � > 0, K�B�

c describes bosonic
correlation functions and is given by K�B�

c � vF=2vc [18].
In order to determine these parameters, it is therefore
enough to extract the sound velocity from the exact solu-
tion. This is done in the usual way by calculating the
compressibility from the ground state energy [19]. Its
asymptotic behavior in the BCS [9] and BEC-limit [14]
and near the CIR is

vc
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�
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(6)

Figure 2 shows vc as a function of 1=�. Note that Kc is
always larger than 1, which implies that the system is a
1D superfluid, as discussed, e.g., in [20].

The low energy spin excitations (the ‘‘spin sector’’) are
described by a sine-Gordon model [19] with coupling
parameter $. A recent renormalization group analysis
of the sine-Gordon model [21,22] shows that when � <
0 the system is driven to the strong coupling fixed point
$2 � 4�, i.e., the spin Luttinger parameter Ks [17] is
equal to 1=2. There it becomes equivalent to a noninter-
acting massive Thirring model [23], i.e., to a gas of
massive relativistic fermions. The latter are called mas-
sive spinons and may be interpreted as quantum solitons
of the sine-Gordon model. They obey the relativistic
dispersion relation

! �
�������������������������������������
��=2 �h�2 � �vsk�

2
q

; (7)
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FIG. 2. Sound velocity vc [in units of the Fermi velocity for
the noninteracting gas vF � � �hn=2m] as a function of 1=�.
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when jkj ! 0. Therefore, the low energy part of the spin
sector is fully described by the spin velocity vs and the
spin gap � or, equivalently, by the mass of the spinon
ms � �=�2v2s�. The spin gap is also defined as the energy
difference between the singlet ground state and the first
triplet excited state. The spin velocity and the spin gap
can be extracted from the spinon dispersion relation com-
puted from the exact solution of the GY model. The spin
gap has the following limiting behavior:

�

�F
’
16

�

�������
j�j
�

s
e��

2=2j�j � � � � ; 1=�! �1

’
2�2

�2
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1�

�2

4�2 �O���4�

�
; 1=�! 0�;

(8)

where the BCS limit was already obtained in [9]. When
� > 0, the spin gap is infinite in our model. Its behavior as
a function of 1=� is plotted in Fig. 3. When 1=� <�1, it
behaves similarly to the gap computed from the BCS
mean-field theory �BCS � �F exp���

2=2j�j� except for
an interaction dependent prefactor �

�������
j�j

p
. The dispersion

relation is reminiscent of that of Bogoliubov quasipar-
ticles, provided �BCS is identified with �=2 [9]. Near
resonance, the spin gap is equal to the modulus of the
two-body bound state energy j�bj � 2�2�F=�2. The
smooth crossover from Cooper pairs to molecules occurs
when the size of a molecule is of the order of the average
distance between particles, which happens for ���2.

The spin velocity can be computed with the bosoniza-
tion approach in the weak coupling limit [17] and from
the Bethe ansatz equations in the strong coupling limit
[9]. It turns out to be given by

vs
vF

’ 1�
�

�2 � � � � ; 1=�! �1

’ �
�

�
���
2

p

�
1�

2

�
� � � �

�
; 1=�! 0�

(9)

and is plotted as a function of 1=� in Fig. 4. Spin corre-
lation functions can be obtained from the knowledge of
the spin gap � and of the charge Luttinger parameters Kc
and vc, as shown in [24].
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FIG. 3. Spin gap � [in units of the Fermi energy for the
noninteracting gas �F � �2 �h2n2=8m] as a function of 1=�.
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FIG. 4. Spin velocity vs [in units of the Fermi velocity for the
noninteracting gas vF � � �hn=2m] as a function of 1=�.
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The above scenario for a BCS-BEC crossover can be
realized in an experiment with ultracold gases confined in
a quasi-1D geometry, e.g., 6Li in an array of 1D tubes
created with optical lattices [25] or on an atom chip [26].
In order to reach a 1D regime, the quantum of radial
oscillation �h!? has to be much larger than (i) the quan-
tum of axial oscillation �h!k, (ii) the Fermi energy �F,
and (iii) the thermal energy kBT. Having a degenerate
system imposes that the latter is also smaller than the
Fermi energy. Note that condition (ii) is required for the
validity of the model, as previously mentioned. Taking,
e.g., the following values for radial !?=2�� 100 kHz
and axial !k=2�� 200 Hz trap frequencies, number of
particles (per tube) N � 100 [25] and temperature T �
50 nK [3] allows us to satisfy the previous requirements.
To study the crossover in such a setting, the dimension-
less coupling constant � needs to be tuned through a
Feshbach resonance [3], giving rise to a CIR as discussed
above. The experimental characterization of the different
regimes can be done, e.g., by measuring the axial collec-
tive modes in the trap. The ratio of the frequen-
cies of the breathing and dipole modes [25] is 2 in both
the BCS and CIR limit [13], and

���
3

p
in the BEC-limit

[27]. In addition, extending an available rf spectros-
copy technique used to measure the molecular binding
energy [28], it should be possible to extract informa-
tion on the gap. It is important to note that our model does
not describe properly the region between the Feshbach
resonance (1=� � �Ana?=2) and the CIR (1=� � 0).
However, due to the condition na? � 1 of quasione
dimensionality this regime can be made arbitrarily small.

In conclusion, our results show explicitly that the evo-
lution from the BCS to the BEC limit is continuous, as
expected on general grounds. The system in 1D evolves
from a weakly attractive BCS- like Fermi gas to a
strongly interacting Tonks-Girardeau gas of dimers and
finally to a weakly interacting Bose gas. The model may
be realized experimentally by using the combination of a
standard Feshbach- with a confinement-induced reso-
nance. In contrast to the 3D case, the exact solution allows
to make quantitative predictions in the whole crossover
regime.
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Note added.—After this work was completed, we be-
came aware of a related work of I.V. Tokatly [29].
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