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Universal Vortex Formation in Rotating Traps with Bosons and Fermions
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We show that the rotation of trapped quantum mechanical particles with a repulsive interaction can
lead to vortex formation, irrespective of whether the particles are bosons or (unpaired) fermions. The
exact many-particle wave function constitutes similar structures in both cases, implying that this vortex

formation is indeed universal.
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When a system consisting of many interacting parti-
cles is set rotating, it may form vortices. This is familiar
to us from everyday life: you can observe vortices while
stirring your coffee or watching a hurricane. In the world
of quantum mechanics, famous examples of vortices
are superconducting films [1] and rotating bosonic *He
or fermionic *He liquids [2,3]. Vortices are also observed
in rotating Bose-Einstein condensates in atomic traps [4—
6] and are predicted to exist [7] for paired fermionic
atoms [8,9]. In this Letter, we show that rotating, trapped
particles with a repulsive interaction lead to a similar
vortex formation, regardless of whether the particles are
bosons or (unpaired) fermions. The exact, quantum
mechanical many-particle wave function provides evi-
dence that, in fact, the mechanism of this vortex forma-
tion is the same for boson and fermion systems.

Let us now consider a number of identical particles
with repulsive interparticle interactions confined in a
harmonic trap under rotation. These particles could be
electrons in a quantum dot [10], positive or negative ions,
or neutral atoms in boson or fermion condensates [11].
Though simple to describe, this quantum mechanical
many-body problem is extremely complex and, in gen-
eral, not solvable exactly. Consequently, in rotating sys-
tems the formation of vortices and their mutual
interaction is usually described using a mean field ap-
proximation. In superconductors this is the Ginzburg-
Landau method [1]. For Bose-Einstein condensates, one
often applies the Gross-Pitaevskii equation [11,12].
In this way, Butts and Rokhsar [13] found successive
transitions between stable patterns of singly quantized
vortices, as the angular momentum was increased. A
single vortex appears when the angular momentum L is
equal to the number of particles N, two vortices appear at
L ~ 1.75N, and three vortices at L ~2.1N (see Refs.
[13-16]). For quantum dots in strong magnetic fields,
the occurrence of vortices was very recently discussed
by Saarikoski et al [17].

Based on the rigorous solution of the many-particle
Hamiltonian, we show that striking similarities between
the boson and fermion systems exist: the vortex forma-
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tion is indeed universal for both kinds of particles, and
the many-particle configurations generating these vorti-
ces are the same. For a small number of particles, the
many-body Hamilton operator can be diagonalized
numerically. We use a single-particle basis of Gaussian
functions to span the Hilbert space. These Gaussians are
eigenstates of the trap for radial quantum number n = 0
and different single-particle angular momenta. These
states dominate for large total angular momenta L. We
consider only a one spin state, i.e., bosons with zero spin
or spin-polarized fermions. Numerical feasibility limits
calculations to small particle numbers N. However, the
advantages of our approach as compared to mean field
methods are that our solutions (i) are exact (up to numeri-
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FIG. 1 (color). Rotating bosons in a trap. The figure shows the
low-lying many-particle energies of N = 8 bosons interacting
by a contact interaction (yellow, lower left) or eight charged
bosons interacting by the long-range Coulomb repulsion (white,
upper right), as a function of angular momentum L (in units
of /). The red line, also called the “Yrast line,” connects the
lowest states at fixed L. The insets show vortices in the
perturbative densities (as explained in the text), occurring
above ratios L/N = 1 for a single vortex and L/N = 1.75 for
two vortices.
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cal accuracy), (ii) maintain the circular symmetry and
thus have a good angular momentum, and (iii) allow the
direct, quantitative comparison between boson and fer-
mion states and thus serve to uncover the origin of the
vortices in small systems.

The many-particle energies for rotating clouds of bo-
sons or fermions are compared in Figs. 1 and 2 (bosons
and fermions, respectively). The low-lying states are
shown as a function of total angular momentum L.
Following the tradition in nuclear physics, the line con-
necting the lowest states at fixed L is called [14] the
“yrast” line. (The word yrast originates from Swedish
language and means ‘“‘the most dizzy.”) It is marked by a
red line in Figs. 1 and 2. For bosons the two spectra
appear almost identical, although one of them is calcu-
lated with a short-range contact interaction and the other
with a long-range Coulomb interaction [18].

The comparison between the lowest energy states of
the spectra for bosons and Coulomb-interacting fermions,
as displayed in Figs. 1 and 2, reveals striking similarities:
The yrast line has the same kinks and vortices can be
found in both systems appearing at similar angular mo-
menta, as we explain below.

When studying the appearance of vortices in the boson
or fermion densities, we should remember that, in con-
trast to mean field methods, for an exact calculation with
good angular momentum the particle density has circular
symmetry and thus does not display the internal structure
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FIG. 2 (color). Rotating, spin-polarized charged fermions
(for example, electrons) in a trap. The figure shows the low-
lying many-particle energies for N = 8. The similarity to the
boson case is remarkable. If bosons have a vortex state at
angular momentum L, the fermions can have the same vortex
structure at angular momentum Lg + N(N — 1)/2. In the ex-
ample shown here, for fermions a single vortex can be seen in
the perturbative densities above (L — 28)/N = 1. The insets
show a single vortex at L = 41 and two vortices at L = 42,
corresponding to (L — 28)/N = 1.75.
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directly. To find the vortices, we therefore would need
to study pair-correlation functions. In the fermion case,
however, this can be problematic due to the disturbance of
the exchange hole. Alternatively, as done in the insets of
Figs. 1 and 2, we break the circular symmetry with a
small perturbation of the form V,(r, ¢) = V,cos({p),
which has € minima around the center. The perturbation
can only couple states which differ in angular momentum
by *€. Since the lowest energy state for each angular
momentum is also the most important in the perturbation
expansion, we can estimate the effect of the perturbation
by the mixture of three yrast states W(L) = Wy(L) +
n[ VoL — €) + Vo(L + €)], where L is the angular
momentum and 7 is the mixing parameter, which is of
the order 0.1 or smaller. If, for instance, the state in
question has a two-vortex structure, then this will appear
in W(L) as two distinct minima for € = 2 already at very
small mixing ratio 7. The insets of Figs. 1 and 2 are
obtained in this way. In the boson case, for N = 8 the
perturbative densities show a single vortex for L = 13,
corresponding to L/N = 1.6, while a second vortex
occurs at L = 14, that is L/N = 1.75. For fermions, the
angular momentum is shifted [19] by N(N —1)/2,
as explained below. In analogy to the boson case, for
N = 8 fermions the single vortex still exists at L = 28 +
13, while two vortices are found at L = 28 + 14.

This universality in the vortex formation can be under-
stood by looking more in detail at the many-particle
states of the rotating system. In the case of noninteracting
bosons, the many-particle ground state is

— z 2
v, - ;I l , W
where the coordinates in two dimensions are expressed by
complex numbers z; = x; + iy;. It turns out that in the
case of spin-polarized fermions the corresponding ““‘con-
densate” is the so-called maximum density droplet
(MDD) [20]

N - |Z]|2
‘I’p = l_[(Zj - Zk)e Z’: s (2)

i<k

which is a Slater determinant of the consecutive single-
particle states, filled from m = 0 to m = N — 1 and thus
has a nonzero angular momentum Lp = N(N — 1)/2.
The state W corresponds to the Laughlin wave function
for the integer quantum Hall effect [21].

For bosons with short-range repulsive interaction, a
single vortex can be formed by multiplying the boson
ground state by a symmetric polynomial [15,22] Py, =
]_HCV (zx — z0), where z, is the center of mass. If one multi-
plies the MDD with the same polynomial [23], this gives
a good approximation for the exact single vortex state for
charged fermions. By noticing that for a system with
many particles, the center of mass can be put at the
origin, zo = 0, we can make an ansatz for the state
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with 7 fixed vortices forming a ring around the origin:

N N
v, = l_[(zjl _ aeim) X oo X l_[(zjn _ aeian)\IiB’F
J1 j

Jn

N
= l_[(Z;’ - an)\I’B,F’ 3)
J

where W, - is either the boson condensate or the fermion
MDD, and the vortex centers are localized on a ring of
radius a (a; = sz). This state does not have a good
angular momentum, but such a state can be projected
out by collecting only terms corresponding to a specific
power of the constant a,

K
v, = an(N—K)S(l_[ ZZ)‘I’B,F» 4)
k
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FIG. 3 (color). Vortex generating single-particle configura-
tions for bosons and fermions. (The particle number is chosen
to be eight in this example.) Exactly the same excitations of the
“ground states” (condensate for bosons, and maximum density
droplet for fermions) cause the vortices in both cases, with the
same increase in angular momentum.
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where S means symmetrization. Note that with n = 1,
K = N, and a = 0 this state describes a single vortex
fixed at the origin. Figure 3 shows schematically the
single-particle occupation of these ‘“‘vortex generating
states” for bosons and fermions. In both cases, the n
vortices are generated by exciting K single particles by
n units of angular momentum. The quantum states of the
numerical exact solutions show that the dominating con-
figurations in cases where we see one, two, or three
vortices (independent of the number of particles) are
indeed those shown in Fig. 3, for both bosons and
fermions.

In the exact diagonalization, by multiplying the exact
boson wave function with the wave function W of the
MDD, Eq. (2), we can determine the overlap between the
fermion and boson states. It turns out to be even larger
than the weights of the most important configurations.
For example, the overlap between the two-vortex states
shown in Figs. 1 and 2 is 57%, while the weight of the
most important configuration (as shown in Fig. 3) in the
boson case is only 15% and in the fermion case 47%.

The vortices are born by the rotational motion and
consequently carry angular momentum. In the single-
particle picture the angular momentum is associated
with the phase of the complex wave function: Going
around the angular momentum axis, the phase changes
by 2#. Similarly, the phase changes by 27 in going
around a vortex center. In the many-particle picture the
phase of the wave function depends on the coordinates of
all the particles. In this case, the phase change around the
vortex cores can be visualized by fixing the coordinates of
N — 1 particles and plotting the phase as a function of the
last coordinate [17]. This is done in Fig. 4 for the vortex
generating configuration for N = 8. The state ¥ has
maximum amplitude, when the electrons are located so

FERMIONS L=28 (MDD) FERMIONS L=42 BOSONS L=14

&

FIG. 4 (color). The phase of the many-particle wave function
for eight particles. The phase is shown as a function of the
coordinates of one particle with all other coordinates fixed. The
color scale is such that the jump from — 7 to 7 corresponds to a
change from orange to pink. (a) shows the phase of the fermion
state of the maximum density droplet W, Eq. (2), with vortices
localized at the fixed electrons; (b) shows the phase of the two-
vortex state. The two additional vortices appear in W,y, when
the state in (a) is multiplied by the vortex generating poly-
nomial [see Eq. (4)]; (c) shows the same two vortices for the
boson state.
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that one electron is in the center and seven electrons form
a ring around it. To study the phase, we fix six of the
electrons on the ring and one at a slightly off-center
position in the middle. The resulting phase is shown in
Fig. 4(a). One can clearly see that each electron carries a
vortex with it, as known from the theory of the integer
quantum Hall effect [24]. When the wave function is
multiplied with the polynomial generating the vortices,
Eq. (4) with n =2, two additional vortices appear
[Fig. 4(b)]. When the fermion state W is replaced with
the corresponding boson state Wy, only the two addi-
tional vortices are seen [Fig. 4(c)].

Finally, we will return to the fermion spectrum shown
in Fig. 2. The maximum amplitude of the MDD, i.e., the
fermion condensate, corresponds to the equilibrium par-
ticle positions of a classical system with logarithmic
repulsive interactions [21]. In small systems a rigid rota-
tion of this localized state gives some of the high angular
momentum states [23,25,26]. For example, in the case of
eight particles there are two classical configurations: a
single ring of eight particles, which we label by (0, 8), and
a ring of seven particles with one particle at the center,
(1,7). The former allows rigid rotation at angular mo-
menta 28 + 8 = 36, 28 + 16 = 44, etc., while the latter at
28 + 7 = 35,28 + 14 = 42, etc., (as marked by arrows in
Fig. 2). In the fermion systems, in some cases both
localization and vortex structure coincide. This is, for
example, the case at L = 42 for eight fermions, which
in the pair-correlation function shows two vortices as
well as very weakly localized particles arranged in a
(1, 7) configuration.

To summarize, we have shown with exact solutions of
the many-particle systems that the vortex formation in
rotating traps of bosons and fermions have universal
features: (i) They appear at certain angular momenta
determined by the number of particles and number of
vortices; (i1) the many-particle excitations generating the
vortices are the same for bosons and fermions; and
(iii) the vortex formation does not depend on the shape
of the repulsive interaction between the particles.

This work has been supported by the Swedish
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Swedish Research Council.
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