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Weakly Bound Dimers of Fermionic Atoms
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We discuss the behavior of weakly bound bosonic dimers formed in a two-component cold Fermi gas
at a large positive scattering length a for the interspecies interaction. We find the exact solution for the
dimer-dimer elastic scattering and obtain a strong decrease of their collisional relaxation and decay
with increasing a. The large ratio of the elastic to inelastic rate is promising for achieving Bose-
Einstein condensation of the dimers and cooling the condensed gas to very low temperatures.
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The last few years were marked by remarkable
achievements in the physics of cold Fermi gases. Several
groups succeeded in cooling trapped fermionic atoms to
well below the temperature of quantum degeneracy
(Fermi temperature Tr) [1-8]. One of the main goals of
these studies is achieving a transition to a superfluid
Cooper-paired state. Trapped Fermi gases are very cold
and dilute, with temperatures 7 < 1 uK and densities
n~ 103 cm™3, and for an attractive interspecies interac-
tion (negative s-wave scattering length a) the most effi-
cient will be the superfluid s-wave pairing between atoms
of different components. However, the superfluid transi-
tion temperature 7. is exponentially small compared to
the Fermi temperature T and is beyond experimental
reach for ordinary small values of a.

At present, actively discussed ideas to circumvent this
difficulty rely on superfluid pairing between fermionic
atoms of two different components via a Feshbach reso-
nance [9—11]. In the vicinity of the resonance the scatter-
ing length is very large, being negative on one side of
the resonance and positive on the other side. On approach
to the resonance, the gas enters a strong-coupling re-
gime. This occurs for kpla| > 1, with kp = 2mTr/h
being the Fermi momentum and m the atom mass.
Crossing the resonance and making the scattering length
positive, the formation of weakly bound dimers of two
different fermions becomes energetically favorable.
Sufficiently far from resonance on the positive side, one
has a weakly interacting gas of these composite bosons
and encounters the problem of their Bose-Einstein con-
densation (BEC). This crossover to the BEC regime has
been discussed in literature in the context of supercon-
ductivity [12-14].

For the BEC regime of the bosonic dimers, the most
important questions are the stability of the condensate
with regard to elastic dimer-dimer interactions and the
decay of the gas due to collisional relaxation of the
dimers to deep bound states. The relaxation is a crucial
process as these dimers are diatomic molecules in the
highest rovibrational state. Several experiments show that
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such molecules consisting of bosonic 8’Rb [15,16] and
133Cs atoms [17], or fermionic “°K atoms with a scatter-
ing length a ~ 100 A [18], undergo a rapid collisional
decay. On the other hand, recent observations [19-22]
indicate the existence of long-lived weakly bound Li, and
K, dimers at densities ~10'3 cm™3.

In this Letter we present an exact solution for the
dimer-dimer elastic scattering, assuming that the (posi-
tive) atom-atom scattering length a for the inter-
species interaction greatly exceeds the characteristic
radius of interatomic potential R,. Then, as in the case
of the 3-body problem with fermions (see [23,24] and
references in [24]), the amplitude of elastic interaction is
determined only by a and can be found in the zero-range
approximation for the interatomic potential. Our findings
lead to a positive dimer-dimer scattering length ayq =
0.6a [25]. This is quite different from the assumption of
earlier studies, aqq = 2a [14] and has serious consequen-
ces for the low-temperature behavior of the system.

We then discuss the collisional relaxation of the weakly
bound dimers to deep bound states and show that it is
suppressed due to Fermi statistics for the atoms. The
binding energy of the dimers is g, = /i*/ma® and their
size is close to a. The size of deep bound states is of the
order of R, < a. Hence, the relaxation requires the pres-
ence of at least three fermions at distances ~R, from each
other. As two of them are necessarily identical, due to the
Pauli exclusion principle the relaxation probability ac-
quires a small factor proportional to a power of (kR,),
where k ~ 1/a is a characteristic momentum of the atoms
in the weakly bound molecular state. The inequality a >
R, allows us to obtain the dependence of the atom-dimer
and dimer-dimer wave functions at short interparticle
distances on the two-body scattering length a and thus
to establish a strong decrease of the relaxation rate with
increasing a. Our results indicate a remarkable collisional
stability of the weakly bound bosonic dimers, which is
consistent with recent experiments.

We start with dimer-dimer elastic scattering which is a
4-body problem described by the Schrédinger equation
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—[Vi + Vi + Vi + mE/R*]¥ = —(m/h*) X [U(r)) + U(ry) + U(ry) + U(r-)]¥. (1)

The internal states of atoms are labeled by the symbols T
and | . In Eq. (1), r; is the distance between two given |
and | fermions, and r, is the distance between the other
two; R/ \/§ is the distance between the centers of mass of
these pairs, r- = (r; + r, = v/2R)/2, and U is the inter-
atomic potential [26]. The total energy is E = —2¢( + &,
with & being the collision energy.

The wave function W is symmetric with respect to the
permutation of the dimers and antisymmetric with re-
spect to permutations of identical fermions:

W(r;, ry, R) = W(ry r;, —R)
= _q,[rir re, i(rl - rZ)/\/_z‘] (2)
At energies &€ <X g, the scattering is dominated by the
contribution of the s-wave channel and can be analyzed

from the solution of Eq. (1) with E = —2¢. For large R
the corresponding wave function is given by

W = o(r)eo(ra)(1 = v2aq/R), (3)
where a4q is the dimer-dimer scattering length, and
@o(r) = (rv2ma)~" exp(—r/a) “4)

is the wave function of a weakly bound dimer. ‘

\
The characteristic de Broglie wavelength of atoms is

~a, and it greatly exceeds the radius R, of the potential
U. Hence, for finding the scattering amplitude one can
replace U by a pseudopotential providing proper bound-
ary conditions for W at vanishing distances between T and
| fermions. For r; — 0 the boundary condition reads:

Y(r,, ry, R) — f(ry, R)(1/47r, — 1/47a), (5)

and it is readily written for r, — 0 and r. — 0 by using
Egs. (2). The function f carries the information about the
second pair of particles when the first two sit on top of
each other. The knowledge of this function is sufficient for
describing all of the four boundaries. In the following, we
derive and solve the equation for f. The value of a4y is
then deduced from the behavior of f at large R, where
from Egs. (3), (4), and (5) we obtain:

f=2/ra)exp(—r/a)(1 — \2ay/R), R>a. (6)

In the pseudopotential approach the interaction poten-
tial can be written as U(r) = (dwh’a/m)d(x)(d/or)r.
Then, making use of Eq. (5) we express the right hand
side of Eq. (1) in terms of the function f and, putting E =
—2¢, transform Eq. (1) into an inhomogeneous Poisson
equation

PY = —[VE, + Vi, + Vi — 2/a?]¥ = 8(r;)f(ry, R) + 8(ry) f(r;, —R) — ZS(IE)f[I':, *(r; —1,)/V2].

The Green function of the operator P is unique (E < 0) and, as the free-motion equation P¥ = 0 has no nontrivial
solutions that are regular at vanishing distances between T and | fermions, W is expressed through f as:

v = [ 13605 sb - F6ls - S R )
LR =12 x

where S =1{r,r, R}, S;={0r R}, S, ={r,0,—R}, S. ={r'/2=R'/V2,¥'/2F R///2, ¥r'//2}, and the

Green function is G(x) = (27)~"?(xa/~2)"7/?K;5(v2x/a), with K7/, being the decaying Bessel function. For R >

a, due to exponential decay of the Green function, the distance R'in Eq. (7) is also much larger than a. Then, using

Eq. (6) for f(r/, R'), one obtains ¥ in the form (3) which is a required superposition of the incident and scattered waves.
The equation for the function f is obtained from Eq. (7) by taking the limit r; — 0 and using Eq. (5). The singular

terms proportional to 1/r; cancel each other automatically, and matching the regular parts yields

f, RI{G(|51 = SN RY) = £ R+ [GUS) = Sl) = S GUS, = S DIF(, R} = (V2 = 1)f(xr, R) 4ma,  (8)

where S, = {0, r, R}. In contrast to ¥, the function f
depends only on three variables: the absolute values of
r, and R, and the angle between them. At R > a, fitting
Eq. (6) with f(r, R) obtained numerically from Eq. (8)
for all distances R and r, we find with 2% accuracy:

dgq = 0.6a > 0. (9)

Our calculations show the absence of 4-body weakly
bound states, and the behavior of f suggests a soft-core
repulsion between molecules, with a range ~a. The result
of Eq. (9) indicates the stability of molecular BEC with
respect to collapse. Compared to earlier studies which
were assuming agq = 2a [14], Eq. (9) gives twice as small
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a sound velocity of the molecular condensate and a rate of

elastic collisions smaller by an order of magnitude.

The lifetime of the Bose gas of weakly bound dimers is
determined by their collisional relaxation into deep
bound states. The released binding energy of a deep state
is ~h?/mR2. 1t is transformed into the kinetic energy of
particles in the outgoing collisional channel and they
escape from the sample. We establish a dependence of
the relaxation loss rate on the scattering length a, without
going into a detailed analysis of the short-range behavior
of the systems of three and four atoms. It is assumed that
the inelastic amplitude of relaxation is much smaller than
the amplitude of elastic scattering. Then the dependence
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of the relaxation rate on a is related only to the
a-dependence of the initial-state wave function V.

We first discuss the relaxation of weakly bound dimers
to a deep bound state in their collisions with atoms. This
process occurs when all of the three atoms approach each
other to distances r ~ R,. As at distances r < a the 3-
body wave function W is determined by the Schrodinger
equation with gy = 0, it depends on a only through a
normalization coefficient: ¥ = A(a)i. In the region
where R, < r < a, the a-independent function # can
be found in the zero-range approximation. The goal then
is to find the coefficient A(a), which determines the
dependence of the relaxation rate on a.

For this purpose, we use the zero-range approximation
and introduce the corresponding function f(r) [24]. The
wave function W(x, y) is expressed through f as:

= Z f i(;(\/ (x —1/2)2 + (y ¥ V3r/2)) f(r), (10)

where y is the distance between identical ( 1) fermions,
\/gx /2 is the distance between their center of mass and
the | atom, and the Green function is G(z) =
(v/873za) 2K, (z/a). At distances between | and T atoms,
f. = (v/3x *y)/2 — 0, the function ¥ should have a
correct asymptotic behavior in analogy with Eq. (5).
This gives an equation for the function f(r):

f, G(e—r'DIf(K) = F()] = GNP + 1% +rr) f(r)) = 0.
(11)

Since the only distance scale in Egs. (10) and (11) is a,
the coordinate dependence of ¥ is governed by a function
F(x/a,y/a) which depends on a only through rescaled
coordinates x/a and y/a. We thus have ¥ = B(a)F. For
the hyperradius p = /x> + y*> < a, Egs. (11) and (10)
give the same result as the method of hyperspherical
harmonics [27]: ¥ = B(a)(p/a)”®,(L2), where () is a
set of hyperangles. So, the coefficient A(a) = B(a)a™".
The parameter y depends on the symmetry of the wave
function and on the orbital angular momentum of the
atom-dimer motion. For the s-wave atom-dimer scatter-
ing we have f(r) = f(|r|) and obtain y = y; = 0.1662.
At large y we have W = * ¢ (7+)(1 — a,q/y), where ¢ is
given by Eq. (4), and a4 = 1.2a is the atom-dimer scat-
tering length [24,28]. Using Eq. (4) we find B = a=3/2
and, hence, A(a) = const X a~32771 where the numeri-
cal constant depends on short-range physics.

As the relaxation rate constant is a,, < A%*(a), we
obtain a,y * a 37" = a~ 333 rapidly decreasing with
an increase in the two-body scattering length a.

The obtained results can be easily generalized to the
case of the s-wave dimer-dimer scattering. Indeed, the
relaxation process requires only three atoms to approach
each other to short distances. Let p and () be the hyper-
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radius and hyperangles of the three fermions and x the
distance between their center of mass and the fourth atom.
At p < |x| ~ a the four-particle wave function decom-
poses into p”2®, (Q)n(x), where the function 7(x) de-
scribes the motion of the fourth particle. Averaging the
relaxation probability over the motion of the fourth par-
ticle makes the problem similar to the relaxation in atom-
dimer collisions. However, there is a relaxation channel
that is more important in the limit of very large a. For the
s-wave dimer-dimer scattering, both the fourth particle
and the atom bound to this particle can undergo p-wave
scattering on the other dimer in such a way that their total
angular momentum is equal to zero. This corresponds to
an antisymmetric function f(r) in Egs. (10) and (11) and
leads to y, = —0.2273. For the relaxation rate we then
find @, « a 3722 = q 2%,

Assuming that the short-range physics is characterized
by the length scale R, and the energy scale /i*/mR2, we
can restore the dimensions and write: a. =
C(hR,/m)(R,/a)*, where s = 2.55 for the dimer-dimer
relaxation, and s = 3.33 for the relaxation in atom-dimer
collisions. For R,/a — 0 the dimer-dimer relaxation
should dominate over the atom-dimer one. However, the
coefficient C depends on a particular system and is differ-
ent for dimer-dimer and atom-dimer collisions.

The much slower collisional decay of the weakly bound
dimers at larger a, following from our results, is consis-
tent with recent observations for Li, [19,20] and K, [22].
The results of Regal et al[22] give a,. * 1/a® with s =
2.3, which is close to our value for the dimer-dimer
relaxation.

We emphasize that the remarkable stability of such
weakly bound dimers at a >> R, is due to Fermi statistics.
Indeed, two identical fermions participating in the re-
laxation process have very small relative momenta k ~
1/a and, hence, the process is suppressed compared to the
case of a dimerized gas of bosonic atoms.

The relaxation loss rate is is usually much smaller than
the rate of elastic collisions. For the Li, dimers at 7 ~
3 uKand ay a ~ 1500ay, their ratio is ~10~. This opens
wide possibilities for reaching BEC of the dimers and
cooling the Bose-condensed gas to temperatures of the
order of its chemical potential.

Then, converting the molecular BEC into fermionic
atoms by adiabatically sweeping across the Feshbach
resonance to the negative side [29], one obtains the atomic
Fermi gas at extremely low temperatures 7 ~ 10727y
which can be below the BCS transition temperature 7.,
[30]. At these temperatures one has a very strong Pauli
blocking of elastic collisions. The collisional rate is sup-
pressed as (T/Tr)? [5], ie., by a factor of 10%, and one
expects the collisionless regime for the Fermi gas above
T,.. This is promising for identifying the BCS-paired state
in trapped gases through the observation of collective
oscillations and/or asymmetric free expansion [31].

We acknowledge discussions with M. A. Baranov, C.
Lobo, and L. D. Carr. This work was supported by the
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Dutch Foundations NWO and FOM, by INTAS, and by
the Russian Foundation for Fundamental Research.
Note added.—Since submission of this paper, long-
lived Bose-Enstein condensation of weakly bound dimers
has been observed for °K, [32] and for °Li, [33-35].
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