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Bohmian Mechanics and Quantum Field Theory
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We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more
or less any regularized quantum field theory there is a corresponding theory of particle motion, which,
in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory
is about. Corresponding to the nonconservation of the particle number operator in the quantum field
theory, the theory describes explicit creation and annihilation events: the world lines for the particles
can begin and end.
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FIG. 1. Two patterns of world lines as they may arise from
some Bell-type QFT. (a) The world line of a photon (dashed
curve) starts at an emission event (at time t1) on the world line
of an electron (solid curve) and ends at an absorption event (at
time t2) on the world line of another electron. (b) An electron-
positron pair (solid curves) is created at the end point of a
photon world line.
Despite the uncertainty principle, the predictions of
nonrelativistic quantum mechanics permit particles to
have precise positions at all times. The simplest theory
demonstrating that this is so is Bohmian mechanics
[1–3]; in this theory the position of a particle cannot be
known to macroscopic observers more accurately than the
j j2 distribution would allow. A frequent complaint about
Bohmian mechanics is that, in the words of Steven
Weinberg [4], ‘‘it does not seem possible to extend
Bohm’s version of quantum mechanics to theories in
which particles can be created and destroyed, which
includes all known relativistic quantum theories.’’

To remove the grounds of the concern that such an
extension may be impossible, we show how, with (more
or less) any regularized quantum field theory (QFT), one
can associate a particle theory—describing moving par-
ticles—that is empirically equivalent to that QFT. In
particular, there is a particle theory that recovers all
predictions of regularized QED [5].

However, we will not attempt to achieve full Lorentz
invariance; that would lead to quite a different set of
questions, orthogonal to those with which we shall be
concerned here. But we note that though the theories we
present here require a preferred reference frame, there can
be no experiment that would allow an observer to deter-
mine which frame is the preferred one, provided the
corresponding QFTs are such that their empirical predic-
tions are Lorentz invariant.

The theories we present are based on the work of Bell
[7] and our own recent results [8–10]; in [8] we study a
simple model QFT, and in [9,10] we give a detailed
account of the mathematics needed for treating other
QFTs. While Bell replaced physical 3-space by a lattice,
we describe directly what presumably is the continuum
limit of Bell’s model [9–12]. Since Bell’s proposal was the
first in this direction, we call these models ‘‘Bell-type
QFTs.’’ The trajectories we use as the world lines consist
of pieces of Bohmian trajectories, or similar ones. A
0031-9007=04=93(9)=090402(4)$22.50 
novel element is that the world lines can begin and end.
This is essential for describing processes involving par-
ticle creation or annihilation, such as, e.g., positron-
electron pair creation. Our description of such events is
the most naive and natural one: the world line of the
particle begins at some space-time point, its creation
event, and ends at another (see Fig. 1). The models thus
involve ‘‘particle creation’’ in the literal sense.

The patterns of world lines are reminiscent of
Feynman diagrams, and the possible Feynman diagrams
correspond to the possible types of world line patterns.
Note, however, that the role of Feynman diagrams is to
aid with computing the evolution of the state vector �,
while the world lines here are supposed to exist in addi-
tion to �. Unlike Feynman diagrams, which are compu-
tational tools not to be confused with actual particle
2004 The American Physical Society 090402-1
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paths, the world line patterns of our models are to be
regarded as describing the possibilities for what might
actually happen (in a universe governed by that model).

Whatever the pattern of world lines may look like, it
can be described by a time-dependent configuration Qt �
Q�t� moving in the configuration space Q of possible
positions for a variable number of particles. In the case
of a single particle species, this is the disjoint union of the
n-particle configuration spaces,

Q �
[1
n�0

Q�n�: (1)

Since the particles are identical, the sector Q�n� is best
defined as R3n modulo permutations, R3n=Sn. For sim-
plicity, we will henceforth pretend that Q�n� is simply
R3n; we discuss R3n=Sn in [10]. For several particle spe-
cies, one forms the Cartesian product of several copies of
the space (1), one for each species. One obtains in this way
a configuration space which is, such as (1), a union of
sectors Q�n� where, however, now n � �n1; . . . ; n‘� is an
‘-tuple of particle numbers for the ‘ species of particles.
For QED, for example, Q is the product of three copies of
the space (1), corresponding to electrons, positrons, and
photons; thus, a configuration specifies the number and
positions of all electrons, positrons, and photons [13].

Let us explore what Q�t� looks like for a typical world
line pattern (see Fig. 2). Q�t� will typically have disconti-
nuities, even if there is nothing discontinuous in the world
line pattern (Fig. 1), because it jumps to a different sector
at every creation or annihilation event. Between such
events, Q�t� moves smoothly within one sector.

It is helpful to note that the bosonic Fock space can be
understood as a space of L2 (i.e., square-integrable) func-
Q(t −)

Q(t +)2

Q(t −)
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FIG. 2. Schematic representation of the configuration space of
a variable number of particles. (a)–(d) show the sectors Q�0�

through Q�3�. A configurational history Q�t� jumps to the next
higher sector at each creation event and to the next lower sector
at each annihilation event. The history shown corresponds to a
world line pattern such as that of Fig. 1(a).
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tions on
S
nR3n=Sn. The fermionic Fock space consists of

L2 functions on
S
nR3n which are antisymmetric under

permutations.
A Bell-type QFT specifies such world line patterns, or

histories in configuration space, by specifying three sorts
of ‘‘laws of motion’’: when to jump, where to jump, and
how to move between the jumps. Before we say more on
what precisely the laws are, we elucidate one consequence
of the laws: if at t � 0, the configurationQ�0� is chosen at
random with probability distribution j�0j

2, then at any
later time t, Q�t� has distribution j�tj

2. This property we
call equivariance. The main consequence is that these
theories are empirically equivalent to their corresponding
QFTs. This conclusion has been explained in detail in [14]
for Bohmian mechanics and the predictions of nonrela-
tivistic quantum mechanics, and the same reasoning ap-
plies here. It involves a law of large numbers governing
the empirical frequencies in a typical universe, and
involves the recognition that the variables that record
the outcome of an experiment are ultimately particle
positions (orientations of meter pointers, ink marks on
paper, etc.).

In a Bell-type QFT, the state of a system is described by
the pair ��t; Qt�, where �t is an (arbitrary) vector in the
appropriate Fock space and may well involve a superpo-
sition of states of different particle numbers. As remarked
before, �t can thus be viewed as a function �t�q� on the
configuration space Q of a variable number of particles.
[For photons, whose position observable is represented by
a positive-operator-valued measure (POVM), �t can be
represented by a wave function �t�q� satisfying a con-
straint.] �t evolves according to the appropriate
Schrödinger equation

i �h
d�t

dt
� H�t: (2)

Typically H � H0 	HI is the sum of a free
Hamiltonian H0 and an interaction Hamiltonian HI.
It is important to appreciate that although there is an
actual particle number, defined by N�t� � #Q�t� :�
�number of entries in Q�t��, or Q�t� 2 Q�N�t��, � need
not be a number eigenstate (i.e., concentrated on one
sector). This is similar to the situation in the usual
double-slit experiment, in which the particle passes
through only one slit although the wave function passes
through both. And as with the double-slit experiment, the
part of the wave function that passes through another
sector of Q (or another slit) may well influence the
behavior of Q�t� at a later time.

The laws of motion for Qt depend on �t (and on H).
The continuous part of the motion is governed by a first-
order ordinary differential equation

dQt

dt
� v�t�Qt� � Re

��
t �Qt� � _̂q�t��Qt�

��
t �Qt��t�Qt�

; (3)
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where

_̂q �
d
d�
eiH0�= �hq̂e�iH0�= �h

����������0
�
i
�h
�H0; q̂�

is the time derivative of the Q-valued Heisenberg position
operator q̂, evolved withH0 alone. Since in the absence of
global coordinates on Q, the notion of a ‘‘Q-valued op-
erator’’ may be somewhat obscure, one should understand
(3) as saying this: for any smooth function f:Q ! R,

df�Qt�

dt
� Re

��
t �Qt��

i
�h �H0; f̂��t��Qt�

��
t �Qt��t�Qt�

; (4)

where f̂ is the multiplication operator corresponding to f.
This expression is of the form v� � rf�Qt�, as it must be
for defining a dynamics for Qt, if the free Hamiltonian is
a differential operator of up to second order [10]. The
Klein-Gordon operator is not covered by (3) or (4); its
treatment will be discussed in future work [15]. The
numerator and denominator of (3) and (4), respectively,
involve, when appropriate, scalar products in spin space.
One may view v as a vector field on Q and thus as con-
sisting of one vector field v�n� on every manifold Q�n�; it is
then v�N�t�� that governs the motion of Q�t� in (3).

If H0 were the Schrödinger operator �
Pn
i�1

�h2
2mi

�i 	 V
of quantum mechanics, formula (3) would yield the ve-
locity proposed by Bohm in [1],

v�i �
�h
mi

Im
��ri�

���
; i � 1; . . . ; n: (5)

When H0 is the ‘‘second quantization’’ of a one-particle
Schrödinger operator, (3) amounts to (5), with equal
masses, in every sector Q�n�. Similarly, in case H0 is
the second quantization of the Dirac operator �ic �h� �
r 	 �mc2, (3) says a configuration Q�t� (with N parti-
cles) moves according to (the N-particle version of) the
known variant of Bohm’s velocity formula for Dirac wave
functions [16],

v� �
����
���

c: (6)

The jumps are stochastic in nature; i.e., they occur at
random times and lead to random destinations. In Bell-
type QFTs, God does play dice. There are no hidden
variables which would fully predetermine the time and
destination of a jump. [Note also that a deterministic jump
law that prescribes the time and destination of the jump as
a (smooth) function of the initial configuration would lack
sufficient randomness to be compatible with equivar-
iance, since after a jump from a sector with dimension
d0 to a sector with dimension d > d0 the configuration
would have to belong, at any specific time, to a
d0-dimensional submanifold.]

The probability of jumping, within the next dt seconds,
to the volume dq in Q, is ���dqjQt�dt with
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���dqjq0� �
2

�h
�Im���q�hqjHIjq

0i��q0��	

���q0���q0�
dq; (7)

where x	 � max�x; 0� means the positive part of x 2 R.
Thus the jump rate �� depends on the present configura-
tionQt, on the state vector �t, which has a ‘‘guiding’’ role
similar to that in Bohm’s velocity law (5), and of course
on the overall setup of the QFT as encoded in the inter-
action Hamiltonian HI. In [8], we spelled out in detail a
simple example of a Bell-type QFT.

Together, (3) and (7) define a Markov process on Q.
The ‘‘free’’ part of this process, defined by (3), can also
be regarded as arising as follows: if H0 is as usual the
second quantization of a one-particle Hamiltonian h, one
can construct the dynamics corresponding to H0 from a
given one-particle dynamics corresponding to h (be it
deterministic or stochastic) by an algorithm that one may
call the second quantization of a Markov process [10].
Moreover, this algorithm can still be used when for-
mula (3) fails to define a dynamics (in particular, when
H0 is the second quantized Klein-Gordon operator).

We now discuss the role of field operators (operator-
valued fields on space time) in a theory of particles.
Almost by definition, it would seem that QFT concerns
fields and not particles. But there is less to this than might
be expected. The field operators do not function as ob-
servables in QFT. It is far from clear how to actually
‘‘observe’’ them, and even if this could somehow, in some
sense, be done, it is important to bear in mind that the
standard predictions of QFT are grounded in the particle
representation, not the field representation: Experiments
in high energy physics are scattering experiments, in
which what is observed is the asymptotic motion of the
outgoing particles. Moreover, for Fermi fields— the mat-
ter fields— the field as a whole (at a given time) could not
possibly be observable, since Fermi fields anticommute
rather than commute, at spacelike separation. We note,
though, that a theory in which �t guides an actual field
can be devised, at least formally [1].

The role of the field operators is to provide a connec-
tion, the only connection in fact, between space time and
the abstract Hilbert space containing the quantum states
j�i, which are usually regarded not as functions but as
abstract vectors. For our purpose, what is crucial are the
following facts that we shall explain presently: (i) the
field operators naturally correspond to the spatial struc-
ture provided by a projection-valued (PV) measure on
configuration space Q, and (ii) the process we have
defined in this Letter can be efficiently expressed in terms
of a PV measure.

Consider a PV measure P on Q acting on H : For B �
Q, P�B� means the projection to the space of states
localized in B. All our formulas above can be formulated
in terms of P and j�i: (4) becomes

df�Qt�

dt
� Re

h�jP�dq� i�h �H0; f̂�j�i

h�jP�dq�j�i

��������q�Qt

; (8)
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with

f̂ �
Z
q2Q

f�q�P�dq�;

for any smooth function f:Q ! R, and (7) becomes

���dqjq0� �
2

�h
�Imh�jP�dq�HIP�dq

0�j�i�	

h�jP�dq0�j�i
: (9)

Note that h�jP�dq�j�i is the probability distribution
analogous to j��q�j2dq.

We now turn to (i): how we obtain the PV measure P
from the field operators. For the configuration space Q �S
nR3n=Sn of a variable number of identical particles, a

configuration can be specified by giving the number of
particles n�R� in every region R � R3. A PV measure P
on Q is mathematically equivalent to a family of number
operators: an additive operator-valued set function N�R�,
R � R3, such that the N�R� commute pairwise and have
spectra in the nonnegative integers. Indeed, P is the joint
spectral decomposition of the N�R� [10]. And the easiest
way to obtain such a family of number operators is by
setting

N�R� �
Z
R
!��x�!�x�d3x;

exploiting the canonical commutation or anticommuta-
tion relations for the field operators !�x�. These observa-
tions suggest that field operators are just what the doctor
ordered for the efficient construction of a theory describ-
ing the creation, motion, and annihilation of particles.

[It is only the positive-energy one-particle states that
are used for constructing the Fock space H , so that H is
really a subspace of a larger Hilbert space H 0 which
contains also unphysical states (with contributions from
one-particle states of negative energy). Since position
operators may fail to map positive-energy states into
positive-energy states, the PV measure P is typically
defined on H 0 but not on H , in which case (8) and (9)
have to be read as applying in H 0. WhileH0 is defined on
H 0, HI is usually not and needs to be ‘‘filled up with
zeroes, ’’ i.e., replaced by P0HIP

0, where P0 is the projec-
tion H 0 ! H .]

To sum up, we have shown how the realist view which
Bohmian mechanics provide for the realm of nonrelativ-
istic quantum mechanics can be extended to QFT, includ-
ing creation and annihilation of particles. Those who find
the all too widespread positivistic attitude in quantum
theory unsatisfactory may find these ideas helpful. But
even those who think that Copenhagen quantum theory is
just fine may find it interesting to see how the particle
picture, ubiquitous in the pictorial lingo and heuristic
090402-4
intuition of QFT, can be made consistent, internally and
with the observable facts of QFT, by introducing suitable
laws of motion.
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