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Induced Transparency by Intersubband Plasmon Coupling in a Quantum Well
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We study coupling of two intersubband plasmons associated with dipole-allowed cascading tran-
sitions in a quantum well. We show that the coupling can lead to the disappearance of the lower-energy
resonance accompanied by an anticrossing behavior. Such coupling induced anomalies are of collective
and resonant nature and provide the first example of Coulomb interaction induced transparency. Our
numerical results from a microscopic theory are confirmed by an analytical model.
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One of the most fundamental features of an interacting
system is the formation of various collective excitations
(CXs) [1,2]. Their mutual couplings lead to the creation of
new CXs and can renormalize the properties of a many-
body system in a nontrivial manner. CXs in the context of
intersubband transitions, such as intersubband plasmon
(ISP) and intersubband exciton (or repellon) [3–5], are
especially interesting, since the transition energies can be
comparable to the energies of these CXs. Besides their
importance in fundamental physics, dramatical spectral
changes resulting from these CXs, and their couplings in
quantum wells (QWs) have important technological con-
sequences, since intersubband resonances (ISBRs) are the
physical basis for light generation and detection in the
long wavelength range from the mid to far infrared.

Various CXs and coupling mechanisms involving
ISBRs have been studied. These include an ISP coupled
with an intrasubband plasmon [6], a longitudinal optical
(LO) phonon [7,8], a surface plasmon [9], and a cavity
mode (leading to an intersubband polariton) [10]. One of
the interesting cases that has so far eluded theoretical
attention is a QW with at least three subbands [11], where
the two lowest subbands are populated such that cascad-
ing transitions from both subbands are possible. Since
each ISBR is a polarizable CX, a natural question arises:
What happens when two ISBRs are coupled? In this
Letter, we report, to the best of our knowledge, the first
case of spectral transparency induced by an out-of-phase
many-body coupling between two intersubband CXs.

We consider a symmetric QW with three subbands
(labeled as 1, 2, and 3 from low to high energy, respec-
tively) with cascading transitions from 1 to 2 (1 ! 2) and
0031-9007=04=93(8)=087402(4)$22.50 
from 2 to 3 (2 ! 3). Direct transition from 1 to 3 is dipole
forbidden. We focus on the situation where the depolar-
ization effect dominates, or where the ISP is the dominant
CX. From studies of ISBRs with two subbands [4,5], this
happens when the QW thickness (W) is large or electron
density is high. For semiconductors with weak nonpara-
bolicity such as GaAs, ISPs are almost always the domi-
nant CXs. We study in detail the coupling of ISPs
associated with 1 ! 2 and 2 ! 3 transitions and its con-
sequences on the absorption spectrum. Typically, linear
coupling between two CXs or oscillators leads to the usual
anticrossing phenomenon. We show that, in addition to
this standard behavior, the linear ISP coupling leads to the
disappearance of the lower-energy resonance at anticross-
ing. Such many-body induced transparency (diminished
absorption) occurs due to destructive superposition of the
ISP components at anticrossing, as both the existence and
coupling of the ISPs have sole origin in Coulomb inter-
action. We suggest that custom-designed QWs with spe-
cific electron populations could lead to the observation of
the induced transparency.

Our theoretical approach follows the semiconductor
Bloch equations developed for interband transitions
[2,12], which have recently been applied to the two-
subband case [4,5,13–15]. The extension to multisubband
cases is straightforward. Our starting point [16] is a
Hamiltonian including quantum confinement, Coulomb
interaction among charged carriers (both electrons and
donors), and light-electron interaction. Derivation of the
equations of motion from the Hamiltonian results in a set
of intersubband semiconductor Bloch equations. The
equation for intersubband polarization pmn

k between sub-
band m and n is given as follows (in the Fourier domain):
�� �h!� i�mn� � �"nk � "mk��p
mn
k � ��dmn

k 	E0 � "mn
k ��fmk � fnk� �

Xl�m;l�n

j;q

fjk�q�V
njlj
q pml

k � Vljmj
q pln

k �; (1)

where k; q are in-plane wave vectors, ! is the angular frequency of the incident light of amplitude E0, �mn= �h is the
dephasing rate [17], dmn

k is the dipole matrix element (assumed k independent in our numerical solution, or dmn
k � dmn),

and fmk is the Fermi-Dirac distribution function. Vljmn
q ’s are Coulomb matrix elements (superscripts indicating subband

indices; see [13]). The single-particle energy ("mk) with self-energy correction and the ‘‘local field’’ correction ("mn
k )

are, respectively, given by
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FIG. 1 (color online). Intersubband spectra of a GaAs quan-
tum well. Different curves, offset for clarity, correspond to
E32 (upper subband separation at k � 0) tuned from 20 to
80 meV with a 5 meV interval. Inset shows peak energy as a
function of E32. The open circle indicates where an induced
transparency occurs at the lower-energy resonance. Parameter
values used: m1 � 0:068me, m2 � 0:073me, m3 � 0:080me;
d12 � �33:5 e �A and d23 � �37:6 e �A.
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FIG. 2 (color online). Absorbance associated with individual
polarization components P12 and P23. The inset shows absorb-
ance in linear-log scale: single-particle (SP) spectrum (dashed
curve) consisting of two nearly degenerate transitions, Hartree-
Fock (Full) result (solid curve) showing a narrowed and blue
shifted single-resonance spectrum, and the Hartree (ISP)
spectrum (long dashed curve).
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X
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Vnjml
q pjl
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X
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0 pjl
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E�0�
mk’s can be obtained from a self-consistent band struc-

ture calculation including quantum confinement effect
and the Hartree potential. The local field correction com-
prises a Fock term (Vnjml

q ) that yields the intersubband
exciton (or repellon [4]) and a Hartree term (Vnjlm

0 ) that
introduces ISPs [4,5].When deriving the above equations,
linearization in the polarization pmn

k has been made. As
can be seen from Eqs. (1)–(3), ISP coupling arises be-
cause each ISP (pjl

k ) modifies the local field experienced
by another one (pmn

k ). Therefore such coupling is of reso-
nant and collective nature. Note that pmn

k ’s are completely
decoupled in the absence of Coulomb interaction ("mn

k �
0) in the linear regime. Thus the situation here provides a
unique example where not only the existence of individ-
ual CXs and their coupling have the same origin in
Coulomb interaction, but, most importantly, the linear
and resonant coupling could also lead to the destruction of
a particular CX. It is the focus of this Letter to study the
effects of such a coupling on the ISBRs.

ISBRs can be described by absorbance defined as
!WIm���!��=nc, where ��!� is the optical suscepti-
bility, n is the background refractive index, and c is
the speed of light in vacuo. ��!� 
 P="0E0 and the mate-
rial polarization P � 2S=��2��2V �

P
mn

R
dkdmn�

k pmn
k �

d12P12 � d23P23. "0 is the electric constant and V �
WS, where S is a normalization area. We numerically
solved Eq. (1) for pmn

k by a matrix inversion method.
The parameter values are given in Fig. 1. Vnjml

q ’s and
Dnjml’s (depolarization factors, 
 Vnjml

0 ) were evaluated
with the quantum box model. Conduction band nonpar-
abolicity was represented by unequal masses (mi; i �
1; 2; 3) for the three parabolic subbands. We further as-
sumed �mn � 1 meV. It was checked that the rotating
wave approximation is applicable and that the last term
(direct interference Coulomb interactions) on the right-
hand side of Eq. (1) plays a negligible role.

Figure 1 shows a series of absorbance spectra as band
edge separation of the two upper subbands, E32, is varied,
while the band edge separation of the two lower subbands,
E21, is fixed to 50 meV, which is the value for a 15 nm
square GaAs QW with infinite barriers. The density is so
large that ISPs dominate, whereas repellons are greatly
weakened by screening and thus are negligible [5]. There
are two striking features in the spectra. First, we see an
anticrossing behavior. Second, but most important, the
lower-energy resonance vanishes at the anticrossing
point. To understand this phenomenon of vanished absorp-
tion (or transparency), we show in Fig. 2 contributions
from individual polarization components to absorbance.
From the inset, we see that ISPs are the dominant CXs, as
the solid and the long dashed curves are almost identical.
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This justifies our ensuing analysis where we will explain
the results solely in terms of ISPs. The lower-energy
resonance practically vanishes, leaving a small bump on
the full and ISP curves (near the position of the single-
particle resonance). The bump remains due to the finite
087402-2
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dephasing rate. The separation between the bump and the
main peak to its right is the anticrossing splitting, esti-
mated to be about 18 meV. The single-particle spectrum
consists of two degenerate resonances: 1 ! 2 and 2 ! 3.
Now we examine the figure itself and explain the reason
for choosing a symmetric QWand a three-subband model.
Symmetry dictates that only two cascading transitions
(1 ! 2 and 2 ! 3) are dipole allowed. The corresponding
depolarization factors are D1122 and D2233. Furthermore,
only one depolarization factor (D1232) survives that cou-
ples the two otherwise independent ISPs. This coupling
leads to the anticrossing behavior and transparency in
lower-energy resonance. Without such coupling, the
three-subband system is reduced to two independent
two-subband systems. The two resonances will simply
cross each other as we sweep the upper subband separa-
tion (see inset of Fig. 1, dashed curves). Because of the
coupling, we see that both the individual components
(Fig. 2) and the total absorbance (Fig. 1) show a reduction
of oscillator strength in the lower-energy resonance and
enhancement in the upper-energy resonance. Note that
the higher energy ISP component always makes an out-
of-phase contribution to the lower-energy resonance. For
example, the P12 contribution to 2 ! 3 is negative before
the anticrossing, whereas the P23 component contributes
to 1 ! 2 negatively after the anticrossing. While contri-
butions from individual components are decreasing as we
approach the anticrossing point, the out-of-phase super-
position further reduces the total oscillator strength of
the lower-energy resonance [also cf. Eqs. (4) and (5)]. At
the anticrossing point, both the decreasing individual
components and their out-of-phase superposition lead to
the disappearance of absorption at the lower-energy reso-
nance, or a transparency induced purely by Coulomb
interaction. We believe that this is the only known ex-
ample where the interaction causes a full out-of-phase
coupling of the two collective excitations and the conse-
quent transparency.
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To gain further insights and to corroborate the simu-
lation results presented above, we consider a limiting case
where Eq. (1) can be solved analytically. To this end, we
assume that the Fock terms in the self-energy and local
field correction can be ignored, and so can the last term in
Eq. (1). Our numerical results (see inset of Fig. 2) show
that these are good approximations for the GaAs QWs.
This is not surprising because of an exact cancellation of
all Fock terms in the case of a parabolic bulk band
[14,15]. To be consistent, we assume equal masses for
all three subbands. Under these approximations, Eq. (1)
is integrated over k and simplified as follows:

� �h!� E21 � i�12�P12 � ��d12E0 �D1122P12

�D1232P23�n12; (4)

� �h!� E32 � i�23�P23 � ��d23E0 �D2233P23

�D1232P12�n23; (5)

where njl � nj � nl �
P

k�fjk � flk�=S. The equation for
P13 is decoupled from these two equations and will not be
further discussed. These two equations are illuminating.
They would be decoupled without the depolarization
term, D1232. There are two types of depolarization terms:
Diijj (i � j) and D1232. The former can be collected into
the left-hand side of Eqs. (4) and (5) by defining a new
transition energy, ~Eij � Eij �Djjiinji. This is the well-
known result of the depolarization shift when both sub-
bands are populated. The latter, D1232, introduces cou-
pling between the two polarizations P12 and P23 and thus
can be termed as the mutual depolarization effect.
Obviously, this is a pure collective coupling.
Accordingly, we call terms D1122 and D2233 self-
depolarization terms. Whereas the self-depolarization
terms lead to the formation of ISPs, the mutual depolar-
ization term introduces coupling between such ISPs.

A closed form solution of the total polarization P �
d12P12 � d23P23 can be obtained as follows:
P � �

�
��E32 � i�23�d212n12 � ��E21 � i�12�d223n23 � 2D1232n12d12n23d23

��E21 � i�12���E32 � i�23� �D2
1232n12n23

�
E0; (6)
where �Eij � �h!� ~Eij. Under resonance condition, i.e.,
d=d!�Im�P=E0�� � 0, the resonance amplitude
[Im�P=E0�] at �E21 � 0 is proportional to

�12n12d
2
12

�2
12 �D2

1232n12n23
�

��12 � �23�n12d12n23d23D1232

�E32��
2
12 �D2

1232n12n23�
;

(7)

which is rather illuminating: the contribution due to the
ISP coupling (second term) is proportional to 1=�E32 and
diverges at the anticrossing point. Therefore, we expect a
large effect and a change of sign at anticrossing when E32

is tuned, from positive below resonance to negative above
resonance, as evidenced in Fig. 2. The resonance frequen-
cies (!�) can be approximated by the poles of Eq. (6)
with �12 � �23 � 0. They show an anticrossing behavior,
and the minimum separation is given by

�h�!� �!��min � 2D1232
��������������
n12n23

p
; (8)

when ~E21 � ~E32. To explain the transparency, we calcu-
late Im�P=E0� with �12 � �23 � � at anticrossing ( ~E21 �
~E32). The numerator is given by

2D2
1232n12n23�d12

�������
n12

p
�d23

�������
n23

p
�2��2�n12d212�n23d223�;

(9)

with the denominator being ��4D2
1232n12n23 � �2�. At

high density, the ratio 2D2
1232n12n23=�

2 is of the order of
100 so that the lower-energy resonance [with minus sign
in the first term in Eq. (9)] is suppressed by the same order
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of magnitude (thus transparency; see inset of Fig. 2) at
anticrossing when d12

�������
n12

p
� d23

�������
n23

p
. In sum, the ana-

lytical conditions for observing the induced transparency
are as follows: (i) the two renormalized frequencies are
degenerate ( ~E21 � ~E32); and (ii) the oscillator strengths
(/ d2ijnij ~Eji) match exactly (d12

�������
n12

p
� d23

�������
n23

p
). The

second condition can be used to estimate the required
doping density (ns), which is given by ns � �1�
2�d12=d23�

2��2DE21 at zero temperature, where �2D �
m�=� �h2 is the 2D density of states. For the GaAs QW
examined in this Letter, we have ns � 3:8� 1012 cm�2,
in reasonable agreement with the electron density used in
the simulation.

It is known that conduction band nonparabolicity
weakens ISPs and enhances intersubband excitons [5].
We therefore studied the coupling of ISPs in InAs, a
representative material with strong nonparabolicity. We
found indeed that both the individual ISPs and their
coupling are very much weakened. The feature of a dis-
appearing resonance is no longer clearly visible.

We comment briefly on possible experimental observa-
tion of the spectral anomalies reported in this Letter. A
possible candidate is to use a symmetric step quantum
well where the lowest two subbands are more or less
determined by the center portion of the well, while the
outer layer thickness can be varied to adjust the upper
subband separation. Other symmetric structures with
continuous grading are also possible. In addition, it is
important to have large enough resonance energies in
order to differentiate the induced transparency from other
mechanisms, such as ISP-LO phonon coupling [8].
Furthermore, the QW thickness is not a critical parame-
ter, much less critical than the coupling depolarization
factor D1232, which has to be as large as D1122 and D2233.
A one-third reduction in D1232 would practically diminish
the coupling effect, as our simulations indicated (not
shown). Finally, the QW needs to be properly doped
such that the two ISP components have similar oscillator
strengths for the induced transparency to occur.

In conclusion, we have studied the coupling of inter-
subband plasmons associated with two cascading transi-
tions among three subbands in a quantum well, where
both the existence of the individual plasmons and their
coupling are due to the Hartree interaction. We show that
the coupling renders an absorption peak transparent,
while the resonances exhibit an otherwise typical anti-
crossing behavior. We believe that this is the first example
of transparency induced by pure many-body Coulomb
interaction. Such a phenomenon not only enriches our
understanding of many-body physics in intersubband
transitions, but it could also open a new way to achieve
transparency in intersubband transitions, a technologi-
cally important field of research.
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