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Entanglement and Quantum Phase Transition in the Extended Hubbard Model
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We study quantum entanglement in a one-dimensional correlated fermionic system. Our results show,
for the first time, that entanglement can be used to identify quantum phase transitions in fermionic
systems.
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Quantum entanglement, as one of the most intriguing
features of quantum theory, has been a subject of many
studies in recent years, mostly because its nonlocal con-
notation [1] is regarded as a valuable resource in quantum
communication and information processing [2,3]. One
important issue is whether there exists any relation be-
tween entanglement and quantum phase transitions [4].
Several groups investigated this problem by studying
quantum spin systems [5–14]. For example, the work
of Osterloh et al. [8] and Osborne and Nielsen [9] on the
spin model showed that the entanglement of two neigh-
boring sites displays a sharp peak either near or at the
critical point where quantum phase transition undergoes.

On the other hand, real systems consist of moving
electrons with spin so to explore the relation between
quantum entanglement and quantum phase transition
in the fermionic system is necessary. Previously, there
have been a couple of works which studied entanglement
in fermionic lattices [15,16], but they did not discuss its
relation to quantum phase transition. In this Letter, in
the framework of the one-dimensional extended Hubbard
model (EHM), we study the change of symmetry in the
ground state on passing the phase boundary from the
point of view of quantum entanglement, and demonstrate
that entanglement is a unique quantity in describing
quantum phase transitions in this system. The EHM is
defined by the Hamiltonian

H � �
X
�;j;�

cyj;�cj��;� �U
X
j

nj"nj# � V
X
j

njnj�1: (1)

In Eq. (1), � �"; #; j � 1; . . . ; L;� � �1, cyj�, and cj� are
creation and annihilation operators. U and V define the
on-site and nearest-neighbor Coulomb interactions. The
EHM is a prototype model in condensed matter theory,
for it exhibits a rich phase diagram [17–19] where various
quantum phase transitions occur between symmetry bro-
ken states. These states include the charge-density wave
(CDW), the spin-density wave (SDW), and phase separa-
tion (PS). By calculating the entanglement as functions of
electron-electron interaction U and V as well as fermion
concentration N=L, we show that quantum phase transi-
tions can be identified at places where local entanglement
0031-9007=04=93(8)=086402(4)$22.50 
is extremum or its derivative is singular. Our results, part
of which are based on the exact solution of the one-
dimensional Hubbard model (HM), are useful for people
to explore quantum entanglement and quantum phase
transition for interacting many-fermion systems.

For the spin-1/2 fermion system, there are four possible
local states at each site, j�ij � j0ij; j "ij; j #ij; j "#ij. The
dimension of the Hilbert space for a L-site system is then
4L, and j�1; �2 
 
 
�Li �

QL
j�1 j�jij are its natural basis

vectors. We consider local density matrix of the ground
state, j�i, which is a reduced density matrix �j �
Trjj�ih�j, where Trj stands for tracing over all sites
except the jth site. Accordingly, the von Neumann en-
tropy Ev calculated from the reduced density matrix �j
measures the entanglement of states on the jth site with
that on the remaining L� 1 sites. It is called the local
entanglement [16] for it exhibits the correlations between
a local state and the other part of the system. Since
Hamiltonian (1) is invariant under translation, the local
density matrix �j is site independent,

�j � z j 0ih0 j �u� j"ih"j �u� j#ih#j �w j"#ih"#j; (2)

with

w � hnj"nj#i � Tr�nj"nj#�j
; u� � hn"i � w;

u� � hn#i � w;

z � 1� u� � u� � w � 1� hn"i � hn#i � w:

(3)

Consequently, the corresponding von Neumann entropy
(or the local entanglement as we will call it hereafter) is

Ev � �zlog2z� u�log2u
� � u�log2u

� � wlog2w:

Clearly, the local entanglement combines four quantities
which are all important to determining the physical
properties of the system. We discover, to be shown below,
that this simple expression plays a more general and
important role for the understanding of the system than
any other single parameter.

We start with general behavior of the local entangle-
ment for the half filling (N � L) case. In Fig. 1, we plot
Ev on theU-V plane with its contour map. It is remarkable
to see that the skeleton of the EHM’s phase diagram [19]
2004 The American Physical Society 086402-1
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can be directly obtained from the contour map. This is
by no means trivial. In the conventional approach to
obtain the phase diagram of the EHM, one has to study
behaviors of different order parameters (say, CDW) in
different regions, either by comparing ground state en-
ergy or critical exponents of correlation functions asso-
ciated with broken symmetry. Whereas here, using a
single quantity, Ev, the global picture of the system could
be observed. One may be tempted to think that double
occupancy could play the same role as Ev, but our de-
tailed calculations show that is not the case. In fact, for
the EHM, ordering parameters corresponding to CDW,
SDW, and PS are all functions of single and double
occupancies. None of them exhibit a unique property as
Ev does. Obviously, this is not a coincidence. Rather, it
reflects the underlying correlation between entanglement
and quantum phase transition behind the superposition
principle of quantum mechanics.

In order to clarify physical pictures further, we present
our studies in details at some special transects. First, we
study the HM, i.e., V � 0 in the EHM. Since the HM can
be solved analytically for both finite and infinite lattices
by the Bethe ansatz method [20], we can study the
analyticity of the phase transition as well as checking
the validity of the numerical exact diagonalization tech-
nique used for the EHM on finite lattices.
FIG. 1 (color online). The changes of symmetry in the ground
state wave function is analyzed by considering the quantum
correlation between local site and other parts of the system.
The curved surface denotes Ev’s dependence on U and V, and
colored curves on the Ev � 0 plane constitutes a contour map.
Three solid lines on the plane denote the local extremum of a
transact of ‘‘mountain’’ surface. Clearly, three main symmetry
broken phases (CDW, SDW, and PS) can be sketched out from
the contour map. Superconducting phase could not be identi-
fied, due to the fact that the broken symmetry is associated
with off-diagonal long-range order. Finite size scaling analysis
should be carried out.
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For the HM at half filling, hn"i � hn#i � 1=2; u� �
u� � 1=2� w and the local entanglement is

Ev � �2wlog2w� 2�1=2� w
log2�1=2� w
: (4)

By making use of particle-hole symmetry of the model,
one easily finds that w��U
 � 1=2� w�U
, so the local
entanglement is an even function of U, i.e., Ev��U
 �
Ev�U
. In the large U limit, jUj ! 1, either all sites are
singly occupied (U > 0) sow � 0, or half of the total sites
are doubly occupied while the other half are empty so
w � 1=2, one gets Ev�jUj � 1
 � 1. For finite jUj, hop-
ping process enhances Ev, which reaches its maximum
value two at U � 0 from both sides. We plot the local
entanglement Ev as functions of U in Fig. 2, obtained
from the Bethe ansatz method (for L � 1 and L � 70)
and exact diagonalization technique (L � 10). The excel-
lent agreement justifies the validity of using small clusters
for other calculations. The ground state of the HM at half
filling is metallic for U � 0, and insulating for U > 0,
so U � 0 is a critical point which separates metallic
and insulating phases. Our result shows that the local
entanglement reaches its extremum at the critical point
where the system possesses maximum SO(4) symmetry
and undergoes quantum phase transition.

Moreover, based on the Bethe ansatz solution, we can
also study the asymptotic behavior of the entanglement
analytically. Near the critical point U � 0, we have
[21,22] w � 1=4� 7��3
U=8�3 � 93��5
U3=29�5,
where � stands for the Riemann zeta function, which
leads to Ev � 2� �1= ln2
�7��3
U=2�3�2 � 
 
 
 .
Clearly, Ev is analytic in the neighborhood of the critical
pointU � 0. This behavior is different from other models
[8–10].

Second, we study the EHM at some fixed values of
on-site Coulomb interaction U by varying nearest-
neighbor interaction V. Results were obtained by the
exact diagonalization of the EHM on finite chains up to
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FIG. 2. Local entanglement Ev of the HM at half filling
versus the on-site coupling U for a different size lattice.
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ten sites. The ground state is always in the subspace of
total Sz � 0, as can be shown rigorously. We did not
perform finite size scaling since qualitative behavior as
shown in Fig. 1 should be the same for an infinite system.
For negative U, each site tends to be doubly occupied.
When V � jtj, the CDW state is favored, while for V �
�jtj, phase separation occurs. Both the CDWstate and PS
state lead to Ev � 1. Only in the region where jVj � 0
does electron itinerant motion dominate, tending to uni-
form density distribution so a local maximum of Ev
occurs around V � 0, as shown in Fig. 3.

For positive U, the model is more relevant to the real
materials. When V > 0, the competition between CDW
and SDW leads Ev to an extremum where the phase
transition undergoes, due to the fact that the local entan-
glement itself combines CDW order parameter and SDW
order parameter at the same time. As shown in Figs. 2 and
3, the transition happens along a line U � 2V, consistent
with other studies of the EHM [17–19]. When V < 0, the
formation of electron clustering, i.e., the phase separated
configuration, challenges the SDW state. In the large U
and jVj limit, it can be easily shown that phase transition
happens at U � �2V [17–19]. From Fig. 3, we also ob-
serve that the local entanglement exhibits singular be-
havior at the transition points. Moreover, for U > 0, we
find that the local entanglement at two boundary lines is
very close to 2, indicating that each of the four local
modes has nearly equal population at the critical point.

Third, we study the variation of local entanglement as
a function of chemical potential by adding the term
��

P
ini to the HM. Consequently, the total particle

number of the ground state, hence the filling factor, could
be tuned. We show the relations between local entangle-
ment and the filling factor n for various on-site coupling
U in Fig. 4.We only plot the part of n � N=L < 1 because
the other part, n > 1, could simply be obtained by the
mirror image relation

Ev�n
 � Ev�2� n
: (5)
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FIG. 3. Local entanglement Ev versus V for various U.
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Figure 4 manifests that the ground state of the half-filled
band is not maximally entangled as long as U > 0,
whereas, the maximum of Ev lies in between n � 2=3
and n � 1. Let us take U � 1, for example. When U �
1, there is no double occupied site, which implies that
w � 0 and u� � u� � N=2L. Hence we have an analyti-
cal expression of the local entanglement Ev �
��1� n
log2�1� n
 � nlog2�n=2
 which has a maxi-
mum at n � 2=3. It is worthwhile to point out that at
1=3 filling (i.e., n � 2=3) when U � 1, the ground state
is a singlet of SU�2j1
 Lie supersymmetry algebra which
possesses the maximal symmetry allowed, while at 1=2
filling, it is a SU�2
 singlet. For U � 0 the ground state is
invariant under SO�4
 rotation at 1=2 filling. This dem-
onstrates that the local entanglement reaches a maximum
value at the state with maximal symmetry. Accordingly,
the maximum position for 0<U <1 is expected to lie
between n � 2=3 and n � 1, which is numerically con-
firmed in Fig. 4.

Except at half filling where it becomes a Mott insula-
tor, the system is an ideal conductor [20]. Consequently,
the local entanglement Ev is not smoothly continuous at
n � 1 for U � 0. It is then instructive to observe the
derivative of Ev with respect to U,

dEv
dn

��������n�1�
� ��log2u

� � log2z

�
1

2
� 2

d�E
dU

���������n�1
;

(6)

where �E is the gap of charge excitation. Equation (5)
gives rise to dEv=dnjn�1� � �dEv=dnjn�1� . Obviously,
there exists a jump in the derivative of Ev across the point
of insulating phase (see Fig. 4, right) unless U � 0.

From the above investigations, we find that the local
entanglement manifests distinct features at the point
where quantum phase transition undergoes. Since the
local entanglement represents the symmetry of the sys-
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FIG. 4. Local entanglement Ev as a function of fermion
concentration for the HM with different on-site U (left), and
dEv=dn at n � 1� as a function of U.
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tem to a certain extent, naturally one expects that the
maximum point of the local entanglement corresponds to
the quantum phase transition point. In light of this con-
clusion, we speculate that the maximum point in Fig. 4
not only denotes the maximum symmetry, but could also
be a critical point separating two different phases. On the
other hand, the discontinuity properties of the local en-
tanglement obviously indicate a phase transition. For
example, the derivative of Ev in the region of U > 0
and V < 0 at half filling of the EHM, and of the HM
caused by chemical potential shift, both are not smoothly
continuous at the quantum phase transition points. This is
similar to other studies, e.g., the one-dimensional XY
model in a transverse magnetic field [8–10], where the
derivative of the pairwise concurrence C with respect to
the dimensionless coupling constant develops a cusp at
the quantum phase transition point. However, such dis-
continuity is not universal, as shown by our results.

It was indicated [23] recently that two mechanisms
may bring about quantum phase transitions in one-
dimensional correlated fermionic systems. One is caused
by the level crossing of the ground state and the other
arises from the level crossing of the low-lying excited
states when no level crossing occurs at the ground state. In
the latter case, if the ground state wave function is
smoothly continuous with respect to the variation of
parameters that drive the quantum phase transition, the
entanglement should also be smoothly continuous at the
quantum phase transition point. On the other hand, the
singularity of wave function may lead to the singularity
of the local entanglement. For the former case, the level
crossing of the ground state will clearly cause the entan-
glement not to be smoothly continuous at the transition
point. Therefore the continuity property of the local en-
tanglement might be an ancillary tool to judge the
mechanism of quantum phase transition proposed in [23].

In summary, we have extensively studied the local
entanglement in the EHM, characterized by the on-site
Coulomb interaction U, the nearest-neighbor Coulomb
interaction V, and band filling N=L. At half filling, we
calculated local entanglement as functions of U and V.
Our results indicated that the local entanglement either
reaches the maximum value or shows singularity (or
both) at the critical point where quantum phase transition
undergoes. For the traditional Hubbard model (V � 0),
the scaling behavior close to the critical point U � 0
manifests that the local entanglement is an analytical
function of U. Furthermore, we analyzed the local entan-
glement by varying V while keep U fixed, and found that
the local entanglement is not smoothly continuous in
some critical regions. Finally, we studied the dependence
of the local entanglement on the filling factor for the HM.
The induced variation of the local entanglement showed
that the local entanglement reaches maximum at a filling
086402-4
factor n between 2=3 and 1. For any finite U, the local
entanglement develops a cusp at n � 1. In the strong
coupling limit, the 1=3 filled band has the maximum
local entanglement, suggesting that the ground state
with maximal symmetry possesses the maximum mag-
nitude of the local entanglement.
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