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Capture into Resonance: A Method for Efficient Control
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To achieve large changes in adiabatic invariants using small control input, a conservative dynamical
system must possess an internal resonance. Capture into resonance is an inherently probabilistic
process. We propose a control method to make it more structured. We study the motion of charged
particles in an electromagnetic field as an example of such a system. When the nominal dynamics brings
particles close to a resonance surface, a short control pulse forces the capture of a particle into the
resonance with the wave. A captured particle is transported by the wave across the energy levels. The
second pulse releases a particle from the resonance when the desired energy level is achieved. We discuss

the distribution of energy achieved by the method.
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One of the control objectives for near-integrable
Hamiltonian systems is to move phase points from one
invariant manifold of the underlying integrable system to
another, like changing the energy of a particle (see, e.g.,
[1-3]). Often, bounded “perturbations” must be used to
reduce the cost of control of Hamiltonian systems.

In many near-integrable Hamiltonian dynamical sys-
tems major simplifications can be achieved by reducing
the coupling between the unperturbed system and weak
periodic perturbations to purely resonant interactions
occurring in the vicinity of a certain surface in the phase
space. A wide range of applications of this technique
includes energy exchange between coupled oscillators
[4], mixing in fluids [5,6], billiards [7], Josephson junc-
tions [8], and dynamics of charged particles in electro-
magnetic fields [9]. A theory of the most prominent
resonance phenomena, scattering on resonance and cap-
ture into resonance, was developed in [10,11].

Consider the dynamics of charged particles in a uni-
form magnetic field and a weak electrostatic wave. At a
qualitative level, this system (and many other systems as
well) possesses two regimes of motion: (i) almost free
(Larmor) rotation and (ii) captured (resonance) propaga-
tion, which are given by two different sets of invariants of
motion. Particles spend almost all the time in Larmor
rotation—the Larmor radius is related to the adiabatic
invariant. Resonance propagation is the only mechanism
of significant changes in the adiabatic invariant in con-
servative weakly perturbed systems, but the transitions
between the two regimes are random in nature and thus
are rather inefficient as a control mechanism.

We propose a method to structure the transitions with
little additional cost. When the internal dynamics brings
particles close to a resonant surface a short control pulse
forces the capture of selected particles into the resonance
with the wave. Captured particles are transported by the
wave. The second pulse is applied to release particles from
the resonance when the desired energy level is achieved.
We show that the proposed mechanism is very sensitive to
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the accuracy of positioning of the capturing pulse and
thus can be used to affect the assigned particles only. The
obtained results may be interesting not just for wave-
particle interactions, but for a variety of problems where
resonant interaction is important and in practical prob-
lems such as particle separation.

Consider a charged particle moving in a plasma me-
dium with a uniform magnetic field, B, directed along the
z axis in the presence of an electrostatic wave propagating
along the y axis, that generates electric field, E:

B = Be,, E = —Ecos(ky — wt)e,,

where k and w are the wave vector and the frequency of
the wave, respectively, and B and E are constant strengths
of the magnetic and electric fields, respectively. The
Hamiltonian of a charged particle has the form

1 e 2 el
H=_—IPi+P:+(P,——Bx| | + — sin(ky — wi),
2m c k
where P, m, and e are the generalized momentum, the
mass, and the charge of a particle, respectively. P, is an
integral of motion and can be set to 0. We introduce a set

of nondimensional variables and parameters

X, =x/p, H, = H/mv?,
P, = P/mv, t, = tvk,

e =cE/vB,

w, = w/kv,

ey

where v is a typical velocity of a particle and p =
cmv/(eB) is the characteristic Larmor radius. w; is the
ratio of the phase speed of the wave to a typical velocity
of a particle and in plasma it can be smaller or larger than
1. Here we introduce a phase of the wave ¢:

¢ = ky — wt, P,=P

¢ y*

The dimensionless Hamiltonian of a charged particle is
(in what follows we do not write the subscript “1”)

h=1P2 — wP, + Yx — P,)* + kesing. 2)
In (2), k = 1/p, and
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h = H/(mv*) — wP,,. 3)

The canonically conjugate pairs are now (x«~ !, P,) and
(¢, P,). We assume that

K <1, w, e~ 1.

Note that ke is twice the ratio of the electrostatic poten-
tial energy to the kinetic energy of a particle.
Hamiltonian (2) possesses 2 degrees of freedom. The
variable ¢ is fast and the variables x, P,, P, are slow. In
the first approximation we can average the motion over
fast ¢ oscillations. In the averaged system /4 reduces to

hy, = P2/2 — wP, + (x — P¢)2/2.

In the averaged system, P, and h,, are integrals of motion
and the problem is integrable. As a characteristic time
scale of the averaged system is 1/k, we introduce slow
time 7 = «t. The averaging is valid everywhere except for
a small part of the phase space where ¢ = 0. In the
(x, P,, P,) phase space the equation ¢ = 0 defines a plane
parallel to the P, axis. We call that plane the resonant
surface, or the resonance, and denote it by R:

¢ = dhy /0P, = P, — (& + x) = 0. )

In the next couple of paragraphs we describe the reso-
nance phenomena in uncontrolled systems. We refer the
reader to [9—11] for a full description. On R, the projection
of the velocity of a particle on the direction of the wave
vector is equal to the phase speed of the wave. Near R, ¢
is not fast compared with x and, therefore, the averaged
system does not approximate the exact system adequately.
A particle approaches the resonant zone (RZ) (defined as
a strip of width ~,/ke around R) with the value of P,
oscillating with a small amplitude ~ ke near some value
P . Upon arrival to RZ, a particle is either captured into
resonance or crosses RZ without being captured. After the
passage through RZ the value of P oscillates near some
other value, P; , again with a small amplitude ~«e [see
Fig. 1(b) below]. Most particles cross RZ in a relatively
short time: they are scattered on resonance. The magni-
tude of the (quasirandom) jump in P,, AP, = P} — P,

(b)
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FIG. 1. Scatterings and a capture in the nominal dynamics:
(a) projection on the (x — P, P,) plane and (b) P, vs slow
time.
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is typically of order ~./ke. In the case of capture into
resonance (CR) upon the arrival to RZ a phase point
drifts for a long time (of order ~1/(ke)) along R and
P, changes by a value of order 1. Whether the particle is
captured or not depends sensitively on initial conditions.
Hence, it is reasonable to consider CR as a probabilistic
phenomenon. The probability of CR in a single passage is
small, of order ~./ke. In other words, a particle crosses R
of the order of ~1//ke times before the first CR happens.

Figure 1 shows a single trajectory of the exact system
with « = 0.005, ¢ = 3, and w = 1. Figure 1(a) presents
the projection of a characteristic phase curve on the (x —
P,, P,) plane. The near-circular part is the motion far
from the resonance, the dynamics there is governed by the
averaged system, and it takes a particle time of order
~27/Kk to complete the period. A wavy near-vertical
line is the captured motion. Figure 1(b) illustrates the
time evolution of P,. Small jumps and a big drop corre-
spond to scatterings and CR, respectively. Note that CR
occurs only once in several consecutive crossings of R.

Near R, introduce Py = P, — (w + x); see Eq. (4). A
phase portrait in the (¢, P,) plane can be one of two
types: with or without the OD. If ¢ = |P_ |, where P, p is
the value of P, on R, phase portraits look like the one in
Fig. 2(a). The dashed line ¥ is a separatrix. The resonance
corresponds to the axis P, = 0. If & <|P,l, there is no
3. Capture is possible only if there is a separatrix on the
(e, F¢) phase plane. The area under the separatrix loop in
the (o, ED) plane, S, is a function of the slow variables, x
and P,, and, hence, changes (although slowly) while a
particle moves along a phase trajectory. Suppose the value
of S increases. Then if a particle comes very close to 2, it
may cross % entering the oscillatory domain (OD) inside
the loop. Consequently, instead of leaving the vicinity of
the resonance, it starts moving near R along a tight spiral
inside the loop [similar to the one shown in Fig. 2(b)]. We
say that such particles were captured, and their dynamics
is regular:

X =~ kP, P, = kw. (&)

The value of a resonance action variable, defined as a
normalized by 27 area under a phase trajectory in the
(¢, P,) plane, is conserved during the captured motion:

(b)
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FIG. 2. (a) The schematic phase portrait on the (¢, P,) plane
for € = |P, |; the dashed line %, is a separatrix. (b) Projection
on the (¢, P,) plane: forced capture and release.
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1 (=
J=— jgpwdgp = Jy = Sy/27 = const. (6)
2w

In Eq. (6), Sy is the value of S when CR happened.

The fate of a captured particle depends on the behavior
of § along a captured trajectory. If in the process of
motion S(t) = S[x(2), P,(¢), P,(1)] returns to Sy, the par-
ticle is released from the resonance. In contrast to that, if
S(r) does not return to Sy, the captured particle acceler-
ates unboundedly. The values of x, P,, P<p at the moment
of release as functions of the values at the moment of CR
define what is called the ““capture input—output function.”
The structure of capture input—output functions for gen-
eral Hamiltonians was discussed in [10,11].

Suppose we need to move a particle from some initial
state with the *“real” energy H ;, to some final state with
the energy H ;. As h is an integral of motion, the objec-
tive is equivalent to changing the value of P,. In addition,
we want to move not all the particles, but only some of
them, that satisfy a certain prescribed property. CR is a
possible candidate for the job: wait for a while and it will
transport some particles to the new energy level. But, as
CR is a probabilistic phenomenon one must wait for a long
time before it happens and meanwhile the whole dynam-
ics of the particles becomes chaotic. Besides that, cap-
tured particles are transported to some new energy level,
defined by the input-output function, which might not
(and probably will not) be near the target one. Finally, CR
chooses a particle at random. Hence, to make CR useful,
we need to implement control both at the entry and exit
moments to enforce a quick and accurate CR and to secure
a timely release.

We use a short pulse in the y direction [recall that P, =
P,; see Fig. 2(b)]. The capturing impulse puts a particle
on a certain level of J: J = J,.. After CR, a particle
oscillates near R. Its dynamics is regular and is governed
by Egs. (5) and (6). If no additional impulses are applied,
a particle stays captured as long as S(r) = 27J,.. When a
particle reaches the target value of P, we apply another
impulse to push the particle from the resonance.

The reachable values of P, are given by w?/2=h+
wP, = €*/2 + w?/2, as the trajectories with smaller
values of P, do not cross R and for larger values of P,
trajectories intersect R where there is no separatrix on the
(e, ED) phase plane. In principle, one pulse is sufficient to
move a particle from any initial value of P ;, to any final
value P, ;> P,;, within the reachable interval. To
achieve this the pulse must put a particle on the level set
J. = S(P,, )/27. In this case the “nominal” release hap-
pens at P, = P ;. The larger the value of P, ; the closer
the captured trajectory must be to the elliptic fixed point
on the (¢, ng) phase plane. In the case P, ; < P, there
are no requirements on the magnitude of the initial pulse.
To release a particle from the capture the second pulse
must be applied.
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One can apply a sequence of pulses to put a particle on
the proper level of J. This control method is robust in a
sense that there is no need for extreme accuracy of the
magnitude of either capturing or releasing pulses. A
capturing pulse must be just strong enough to put a
particle inside the OD. If the value of J,. is smaller than
S(Py,¢)/2, no adjustments before the releasing pulse are
necessary. Otherwise, additional pulse(s) are required to
push a trajectory deeper into the OD. A releasing pulse
must be just strong enough to kick the particle away from
the loop. Characteristic controlled captured dynamics is
shown in Fig. 2(b). The right and left dashed lines cor-
respond to nominal motion before and after CR, respec-
tively. The thin solid line is captured motion. Vertical
thick solid lines are control impulses. The first pulse
(the vertical line in the middle) is the pulse that forced
CR. It follows from the shape of the first loop of the
captured curve in Fig. 2(b) that it is close to the separa-
trix. The second pulse (the right vertical line) was applied
to put a particle deeper into the OD, and the last pulse (the
left vertical line) released a particle from the resonance
when a target value of P, is reached.

Now we construct a control scheme that does not
require feedback, uses kicks localized in a certain place
in the real (physical) space, and still does the job for a
majority of particles from a cloud of initial conditions.
For numerical simulations we chose initial conditions to
be xo € 3.9,41), P, € (-0.1,0.1), ¢o=0.5, and
P, = 2.0. The values of the parameters are w = 1, ¢ =
12, and k = 10™*. Our objective is to change the value of
P, from 2.0 to 0.65. The total time of the evolution is
T; =5 X 10*. In this case R is a vertical line x — P, =
—1. For control kicks we implemented a rectangular
pulse that gives an additional term in the equation for sz

P, = —kecosg + p;f,(x). (7

In Eq. (7), the first term comes from the nominal dynam-
ics, the second term is the control pulses with f,(x) =1
for [x — x; ;| < & and f,(x) = 0 otherwise, and j = {c, r}
correspond to capturing and releasing pulses, respec-
tively. We call x;, 6, and p location, width, and magnitude
of the kick, respectively. We used 6§ =107 , p, =
—0.003, x;, = —0.4, and p, = 0.001 and varied x; . as
discussed below. A typical captured trajectory is shown in
Fig. 3. The upper and lower horizontal lines in Fig. 3(b)
denote locations of the capture and the release, respec-
tively. Comparing Fig. 3 with Fig. 1, note that the differ-
ence in characteristic values of the slow time reflect that
CR happened in the first period. The energy applied by
the kicks is approximately 0.015, 2 orders of magnitude
less than the difference between Py r and Py ;,.

Our simulations show that the percentage of captured
particles is rather sensitive to x; . and is less sensitive to
6. and p,. The best moment to apply the kick is when a
particle is right above the separatrix loop [point K in
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FIG. 3. Forced capture and release. (a) Projection of the phase FIG. 4. Histograms of the distribution of the final values of

curve on the (x — P, P,) plane; (b) the evolution of x and P,,.
The upper and lower horizontal dashed lines denote the loca-
tions of the capture and the release, respectively.

Fig. 2(a)]. For different initial conditions particles arrive
to the respective points K at different values of x. Hence,
the kick is most effective (in terms of the percentage)
when it is applied in the middle of a range of xx for a
given set of initial conditions. In terms of the values of
the parameters used in simulations, the best results were
achieved with x; . = 1.02, for which 87% of trajectories
were captured. For x; . = 1.01 and x; . = 1.03, the per-
centage of captured trajectories was 53% and 38%,
respectively.

The mechanism of release is more robust—if the pulse
is large enough the release definitely occurs. All the
captured trajectories (for which the releasing kick was
applied) were released. After the release particles pro-
ceed along an averaged trajectory. Before the time of
simulations runs out, they undergo an additional scatter-
ing on resonance. In that region the area under the sepa-
ratrix decreases and the natural CR is impossible.

The sensitivity of the probability of CR to the match
between the locations of the pulse and the resonance
suggest possible applications of the control via CR. One
of the possible applications is to separate particles of two
different types that differ by mass only: m; and m,. We
performed a set of simulations with 8 = m,/m; = 1.05.
For the type “2” particles the resonance is located at x =
2 — 1/B. As a result, the pulse, which is synchronized
with the type 1, is applied at a ‘“wrong” moment.
Consequently, only a few (of the order of 3%) of the
type 2 particles are captured due not to a control pulse,
but a natural dynamics. Histograms of the final distribu-
tions of the values of P, are shown in Fig. 4. The distri-
bution in Fig. 4(a) clearly has a peak near the target value
of 0.65. The distribution in Fig. 4(b) has a peak value of
1.97 near the original value of 2.0. The width of both
distributions is of order ~./ke. Both distributions can be
made sharper by reducing « and/or &. Similarly, particles
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P, for x; . = 1.02. (a) m = my; (b) m = my.

can be separated based on the initial discrepancy in
energy or coordinates.

In conclusion, we proposed a method to control tran-
sitions between different regimes of Hamiltonian dynam-
ics (in particular, resonance transitions between Larmor
and captured motions of charged particles in electromag-
netic fields) by applying weak control pulses. The sensi-
tivity of the proposed mechanism to initial conditions
allow for an accurate addressing of the control.
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