
VOLUME 93, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S week ending
20 AUGUST 2004
Ionization and Recombination in Intense, Short Electric Field Pulses

Darko Dimitrovski,1,2 Eugene A Solov’ev,2 and John S Briggs1

1Theoretische Quantendynamik, Universität Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany
2Macedonian Academy of Sciences and Arts, 1000 Skopje Macedonia

(Received 28 January 2004; published 19 August 2004)
083003-1
We investigate ionization and excitation of H(1s) in the limit of very short electric field pulses,
analytically and numerically and both in the limit of small and extremely large peak electric fields. We
identify a process of recombination akin to Rabi flopping from the continuum and give an analytic
expression for this process after a single-cycle strong-field pulse.
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The development of intense, very short light pulses
proceeds apace. Already, advanced laser facilities can
achieve pulses with peak electric field F0 � 1 a:u:
(1 a:u: � 5:1423� 109 V=cm) and pulse lengths ��
10 fs (1 fs � 41:341 a:u:) corresponding to �1–2 cycles
of the electric field at a photon energy !� 0:05 a:u: [1].
On the other hand, high frequency pulses, at the moment
of the order of 100 cycles, are produced in DESY from a
free electron laser source with frequency around half an
atomic unit, intensities 7� 1013 W=cm2 (peak electric
field F0 � 4:4� 10�2 a:u:) and total pulse duration of
50 fs [2], as well as from high-harmonic generation
with frequency ! � 3:3 a:u: and total duration of
0.65 fs [3]. There is no doubt that much higher peak fields
and much shorter pulse lengths with fewer cycles will be
produced in the future.

When pulse lengths are so short that only a half or one
cycle of the field occurs, the characteristics of ionization
and excitation are very different from the very long pulse
or continuous wave regime. In the context of ionization
from an atomic orbit, ‘‘short’’ implies a pulse length
shorter than the characteristic classical orbit time.
Almost all treatments, except Refs. [4,5], considering
very strong fields (>1 a:u:) have been wholly numerical,
involving pulses with many cycles and with photon en-
ergies comparable to or greater than 0.5 a.u., the ioniza-
tion energy of hydrogen. Much attention has concentrated
on the phenomenon of stabilization as the peak field
strength F0 increases [6]. There are a large number of
papers concerning ionization and recombination from
Rydberg states (see, for example [7]). Here, we consider
not only total ionization probability but also energy and
angular distributions for ionization from the ground state
of the hydrogen atom in half- or one-cycle pulses over a
span of field strengths: from the weak, perturbative re-
gime to the very strong, ‘‘short pulse approximation’’
limit, also called impulse or first Magnus approximation
[8,9]. The principal results of this work are as follows:

(i) To present perturbation theory analytic results for a
sequence of alternating square or sinusoidal pulses and to
compare the respective ionization probabilities differen-
tial in the electron energy. We also show that ionization
0031-9007=04=93(8)=083003(4)$22.50 
and recombination repeat periodically in perturbation
theory.

(ii) To show that for a one-cycle pulse, in the strong-
field case there is a range of field strengths where ioniza-
tion caused by the first half-cycle is reversed by the
second, i.e., recombination occurs, essentially Rabi flop-
ping involving the continuum. Note that for initial
Rydberg states recombination occurs into a large number
of neighboring states. We predict that for the initial
ground state, recombination occurs predominantly to
the ground state, so that one can speak of Rabi flopping.

(iii) To present an analytic formula for the probability
of returning to the ground state (recombination) follow-
ing a second half-cycle, where the first half-cycle causes
ionization.

To obtain analytic results we restrict ourselves to the
hydrogen atom. Then the high ionization energy implies
pulse duration at the moment unachievably short.
However, when scaled to other atoms the relevant pulse
lengths may soon be available. Atomic units are used
throughout.

The probability amplitude for occupation of a contin-
uum state �k with linear momentum k at time t after a
classical laser field is switched on at a time t0 is given by

a�k� � h�kjU�t; t0�j�ii; (1)

where �i�t0� is the initial atomic state and U�t; t0� is the
full time-development operator defined by

H�t�U�t; t0� � i@U=@t; (2)

where in dipole approximation,

H�t� � H0 � r � F�t� 
 H0 � V�t�: (3)

Here H0 is the atomic Hamiltonian and F�t� describes the
linearly polarized electric field. In Eq. (1) we will take
t0 � 0 and consider a pulse of finite duration �, so that for
t > � the state �k is a continuum eigenstate of H0.

The propagator U�t; t0� satisfies the equation

U�t; t0� � U0�t; t0� � i
Z t

t0
U0�t; t00�V�t00�U�t00; t0�dt00; (4)
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FIG. 1. Energy distribution for q � 9� 10�3, � � 0:3. The
arrow marks the resonant peak.
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where U0�t; t
0� � exp��iH0�t� t0��.We will consider two

approximations. First, simple first order perturbation
theory in which U�t00; t0� in (4) is replaced by U0 to
give, from (1)

a�k� � �i
Z �

0
h�kjr � F�t�j�ii exp�i�E� Ei�t�dt (5)

with E � 1
2 k

2. Second, appropriate for short pulses, we
use the first order Magnus approximation (FMA) [10] to
the exact solution (1), i.e.,

a�k� � h�kj exp��iq�r�j�ii (6)

exact to order �3 with

q �
Z �

0
F�t�dt (7)

appearing as a momentum boost q provided by the laser
field (for peak strength F0;q � F0� for rectangular and
q � 2F0�=� for sine half-cycle pulses). Note that the
amplitude (6) is independent of the pulse shape and there-
fore all pulses are equivalent to a delta-function pulse
F�t� � q��t� t1�, t1 2 �0; ��. The two approximations
(5) and (6) are chosen because the conditions of validity
[for (5) a weak field of arbitrary duration, for (6) a short
pulse of arbitrary strength] are complementary. More
importantly, however, and perhaps noteworthy in the field
of laser-atom interactions, both approximations admit
closed-form analytic solutions without any of the addi-
tional approximations (e.g. reduced dimensionality, cut-
off potential) which are often made in this field.
Similarly, our fully numerical results, based on the dis-
crete variable representation (DVR) [11], are calculated
without approximation. It is also interesting that the two
approximations have a common region of validity,
namely, when the field strength is small and the pulse is
short, i.e., q � 1. Then (6) can be approximated by

a�k� � �iq � h�kjrj�ii: (8)

Similarly, when �E� Ei�� � 1, Eq. (5) may be approxi-
mated as Eq. (8), i.e., perturbation theory and FMA give
identical results. Equation (8), rather then Eq. (6), is
called the sudden approximation in Ref. [12] and we
will also adopt this notation and reserve the term FMA
for the short pulse approximation. Since the transition
matrix element is dipole, in both cases, when the initial
state is of S symmetry, the final continuum angular dis-
tribution will be that of a pure P state. Therefore only
when q � 1 will a unidirectional pulse produce forward-
backward symmetrical electron energy distributions.

We consider first of all the perturbation region and the
effect of a finite sequence of alternating pulses. For sinu-
soidal pulses F�t� � F0 sin��t=�� and 0< t < n�, of peak
strength �F0 and duration �, one can calculate analyti-
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cally the ionization probability dP=dE from the ground
state, integrated over all angles of emission, i.e.,

dP
dE

� 4
�F0��2

�2
jh�kjrj�1ij

2 sin
2f�n��E�E1� � n��=2g

��E�E1�
2 � ��=��2�2

;

(9)

where E1 � �0:5 is the ground-state energy. We have
derived a corresponding expression for n alternating rect-
angular pulses. The energy distributions resulting from 5
full-cycle pulses are shown in Fig. 1. For � � 0:3 the
energy distributions peak strongly at zero energy. In the
region near E � 0 the energy distribution is independent
of pulse shape and shows a broad peak near E � �=� �
!0 (the arrow on Fig. 1), corresponding to the frequency
of oscillation of the pulses. For longer �’s this peak grows
and dominates the emission of zero-energy electrons. Of
course this is just the onset of the infinite-pulse behavior,
where this resonance peak becomes a � function. The
higher-energy distribution shows peaks at E1 �!0 �
!0�1� 2j�=n, j � 1. For sinusoidal pulses these peaks
decrease smoothly as a function of energy whereas for
square pulses they are folded with the Fourier transform
of a single half-cycle.

In Fig. 2 the effect of only one, two, or three short
alternating pulses is shown, here the numerical DVR
calculation and the perturbation theory calculation give
identical results. We show the angle-integrated energy
distribution for small energies (compared to the scale of
Fig. 1). After one-pulse the ionization probability peaks at
zero energy with a magnitude of �10�4. However, after a
second pulse with opposite direction of the electric field
almost all ionized electrons have recombined. Continuing
the sequence to a third pulse restores the probability al-
most to the one-pulse value. This feature of perturbation
theory with short pulses has not been emphasized to our
knowledge, since mostly one concentrates on the long-
time Fermi golden rule result. The small residual ioniza-
083003-2
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FIG. 3. Probabilities Pion and P1 for a half-cycle pulse in the
FMA, and from the DVR calculation for both sinusoidal and
rectangular half-cycle pulses.
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tion after two pulses is just due to the high momentum
components of the ionized wave packet which leave the
interaction region quickly enough to avoid recombination.
A further interesting effect in the perturbation regime,
as in the strong-field regime [13], is the enormous de-
pendence on the phase of the electric field. If we consider
a one-cycle pulse with a sin2 envelope, i.e., F�t� �
F0sin

2��t=n�� sin��t=���� where � is the relative
phase of envelope and carrier, one can show that a phase
change of �=2 brings more than 2 orders of magnitude
change in the ionization probability near threshold.

Now we switch attention to the strong-field short pulse
case, i.e., consider F0 ! 1 for � fixed. Up to q � 0:1 we
can use the sudden approximation Eq. (8) to the FMA
form of Eq. (6). As has been emphasized in studies of
ionization from Rydberg states [8], there is a close con-
nection with fast charged-particle collisions where the
first Born approximation also leads to the momentum
boost matrix element (6). In that case q is the momentum
transferred from the charged-particle to the atomic elec-
tron. For the hydrogen atom these matrix elements are
known in closed form [14]. The sudden approximation (8)
then corresponds, for collisions, to the dipole limit, where
the momentum transfer is vanishingly small.

First of all we have considered a single half-cycle pulse
and examined the breakdown of the sudden approxima-
tion by comparing dP=dE in both sudden and Magnus
approximations. For q � 0:09 the two agree perfectly and
predict a maximum for k � 0 followed by a monotonic
decrease for larger k. As q increases beyond �0:1 the
sudden approximation breaks down and the FMA result
begins to acquire a peak near k � q. Here the dipole
approximation fails completely and this manifests itself
in the angular distribution which is of P symmetry in the
dipole approximation but strongly asymmetrically
peaked in the field direction for large q. As shown in
Eqs. (6) and (7) the FMA is independent of pulse shape
and thus the pulse can always be treated as a �-function
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pulse with q �
R
�
0 F�t�dt. That the FMA is an excellent

approximation is illustrated in Fig. 3 for a single pulse
with � � 0:3 and varying q. In Fig. 3 we show both the
ionization probability Pion (i.e., dP=dE integrated over E)
and the occupation probability P1 of the initial state. In
both cases the FMA of Eq. (6), giving a closed-form
analytic result, is in perfect agreement with separate
DVR calculations using both sine and rectangular pulses.
In Fig. 3 the depletion of the ground state almost mirrors
the onset of complete ionization indicating, as we have
verified, very small population of excited states.

The above results can be viewed as those for a half-
cycle sine pulse. Then one can pose the question of what
happens for a full-cycle pulse. In the strict FMA [Eq. (6)]
the amplitude of ionization after a full cycle is identically
zero, as is also the case in the approximation of Ref. [5].
However, here we modify the FMA by considering a full
cycle to be equivalent to two � pulses separated by a half-
cycle time �. Then, between the two pulses the electron
propagates in the nuclear Coulomb field, leading to a
nonzero final transition amplitude of the form

aif � h�kj exp�iq � r� exp��iH0�� exp��iq � r�j�ii

(10)

with an error term ��2q. Since for large q (see Fig. 3), the
electron occupies the continuum after the first half cycle,
we can approximate the result of two pulses by consider-
ing only continuum states as intermediate states. Then the
probability of population of the ground state after the
second � pulse is

Pc
1 �

��������
Z
hj�kj exp�iqr�j�1ij

2 exp
�
�i

k2

2
�
�
d3k

��������
2
:

(11)

By considering the analytical form of the boost matrix
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element in (11) one can show that for asymptotically large
q, the ground-state occupation probability assumes the
simple analytic form

Pasymptotic
1 � exp��2q��

�
1�q��

�q��2

3

�
2
: (12)

The results for a one-cycle sine pulse (� � 0:3) from the
DVR calculation and from the FMA Eq. (11) are shown in
Fig. 4. The full circles are the probability P1 of remaining
in the ground state. We show the half-cycle Pion from
Fig. 3 (open circles) showing that for q � 2:4, at half-
cycle the electron is in the continuum. Hence, for q � 2:4,
the ground state is first fully depleted and then repopu-
lated on the second half of the pulse. The full curve is
precisely the probability for this process calculated ac-
cording to Eq. (11). Also shown is the asymptotic ap-
proximation for P1 from Eq. (12). For q � 3 it agrees
with P1 from DVR and FMA. Surprisingly, however, it
agrees with the DVR calculation for all q (i.e., all F0), up
to q � 4:5, where DVR breaks down. For q < 3 this can
be viewed as a happy accident arising from the fact that
P1 of Eq. (12) has the correct q � 0 value of unity.
Nevertheless, even when viewed as only asymptotically
justified but empirically everywhere correct, the formula
(12) is a remarkably simple result for the population of
the ground state after a single-cycle short laser pulse.

Finally, that ionization and recombination really do
occur in the two halves of the pulse is shown in Fig. 5
where we plot P1�t� and Pion�t� for q � 3 (the population
of excited states never exceeds 10%). On the first half of
the pulse there is almost 100% ionization followed by
�80% recombination into the ground state. Note that this
process is entirely to be distinguished from ‘‘stabiliza-
tion’’ of the ground state. Rather, over a small range of q
one has a process more akin to ‘‘Rabi flopping’’ between
continuum and the ground state. We have compared the
analytic formula (12) to numerically converged calcula-
tions for a variety of pulse lengths 0 � � � 1 and found
083003-4
in all cases that the analytic result is in excellent agree-
ment with the numerical one.
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