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We establish an optimal gluing construction for general relativistic initial data sets. The construction
is optimal in two distinct ways. First, it applies to generic initial data sets and the required (generically
satisfied) hypotheses are geometrically and physically natural. Second, the construction is completely
local in the sense that the initial data is left unaltered on the complement of arbitrarily small
neighborhoods of the points about which the gluing takes place. Using this construction we establish
the existence of cosmological, maximal globally hyperbolic, vacaum space-times with no constant

mean curvature spacelike Cauchy surfaces.
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Introduction.—As with Maxwell’s theory, a set of ini-
tial data for Einstein’s theory of gravity must satisfy a set
of constraint equations. Unlike the Maxwell constraints
V-E = p and V- B = 0, the Einstein constraint equa-
tions are nonlinear and fairly complicated. Hence,
although much has been learned about solutions of the
Einstein constraint equations during the past 30 years
using the conformal method and related techniques,
many questions concerning them have remained formi-
dable. A number of these questions can now be answered
using a powerful tool from geometric analysis: Gluing.
Analytic gluing techniques have played a prominent role
in many areas of differential geometry over the past 20
years. Some particularly notable applications include the
study of smooth topology of four manifolds (via
Donaldson and later Seiberg-Witten theory), pseudoholo-
morphic curves in symplectic geometry, the existence of
half-conformally flat structures on four manifolds, mani-
folds with exceptional holonomy, singular Yamabe met-
rics and the study of minimal and constant mean
curvature surfaces in Euclidean three-space, and many
others.

It is only recently that these techniques have been
applied to general relativity, and the impact of this work
has been significant. In the first two applications gluing
techniques were used in very different ways toward quite
different aims. In [1], Corvino applied a new gluing
method to asymptotically flat, time symmetric initial
data. The core feature of [1] is a local deformation result
for the scalar curvature operator. By exploiting the under-
determined nature of this operator (or more precisely, the
fact that its adjoint is overdetermined), Corvino is able to
show that one can solve for prescribed, small compactly
supported deformations of the scalar curvature. This
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deformation result is used in [1] to prove the existence
of asymptotically flat, scalar flat metrics on R" (n = 3),
which are Schwarzschild outside of a compact set. The
evolution of this initial data produces nontrivial space-
times which are identically Schwarzschild near spatial
infinity. In the more general setting of constant mean
curvature initial data sets, a gluing construction was
developed [2] in the context of the well-known conformal
method of Lichnerowicz, Choquet-Bruhat, and York,
which reduces the constraints equations to a determined
elliptic system. The construction of [2], and subsequently
[3], allowed one to demonstrate how space-times can be
joined by means of a geometric connected sum, or how a
wormhole can be added between two points in a given
space-time (on the level of the initial data). This was
flexible enough to address a number of issues concerning
the relation of the spatial topology to the geometry of
solutions of the constraints and the constructibility of
multi black hole solutions (see also [4]).

We have subsequently developed this technique so that
it can be applied to a much wider class of solutions;
indeed, we have now obtained the sharpest possible glu-
ing theorem for Einstein constraint equations. Using it,
we can do all of the following. (i) Show that for a generic
solution of the constraint equations and any pair of points
in this solution, one can add a wormhole connecting these
points to the solution with no change in the data away
from a neighborhood of each of the points. (ii) Show that
for almost any pair of initial data sets (including, say, a
pair of black hole data sets, or a cosmological data set
paired with a set of black hole data), one can construct a
new set which joins them. (iii) Prove that there exist
spatially compact maximal globally hyperbolic space-
times which satisfy the vacuum Einstein equations and

© 2004 The American Physical Society 081101-1



VOLUME 93, NUMBER 8§

PHYSICAL REVIEW

week ending

LETTERS 20 AUGUST 2004

contain no closed constant mean curvature hypersurface.
It is likely that these new gluing techniques will continue
to be very useful for the practical construction of physi-
cally interesting initial data sets.

Main results—We recall that a set of initial data
(M", vy, K, V) for Einstein’s theory consists of an
n-manifold M", a Riemannian metric y on M", a sym-
metric tensor field K on M", and possibly a set of non-
gravitational fields ¥ (e.g., E and B for Einstein-

Maxwell). The constraint equations require that
(M", vy, K, ¥) satisfy

16mp = R(y) —[2A + |K[} — (r, &)’ (D)

167rJ7 = 2D(KY — tr, Ky"). 2)

where D is the covariant derivative corresponding to y, R
is its scalar curvature, p = p(y, V) is the energy density
function of the nongravitational fields, and J = J(y, V) is
the corresponding momentum flow vector field [5]. Now
let (M", y, K, ¥) be a solution of (1) and (2), and let p,
and p, be a pair of points contained in M". The basic idea
of gluing is simple: let M be the manifold obtained by
removing from M geodesic balls of radius € around p,
and p,, and gluing in a neck S"~! X I. One then tries to
construct initial data ((e), K(€), ¥(€)) on M, which co-
incide with the original data away from a small neighbor-
hood of the neck. If the points lie in distinct connected
components of M, then the manifold M is the connected
sum of those components. If the points lie in the same

component, then M consists of M together with a
\

“handle” or wormhole connecting neighborhoods of
the two points.

We cannot expect to be able to glue every pair of
solutions of the constraints. For example, if we could
locally glue a set of data for Minkowski space to a
solution of the constraints on a manifold which does
not admit a flat metric, then the resulting data would
have zero Arnowitt-Deser-Misner mass, and yet would
not be data for Minkowski space, thereby violating the
positive energy theorem [6]. So there are necessarily
conditions a data set must satisfy if it is to admit a gluing
construction as above.

As noted above, in earlier work, it was required that a
solution have constant mean curvature (CMC) [2], or at
least have a CMC region surrounding each of the chosen
gluing points [3]. Further, global “nondegeneracy’ con-
ditions needed to be satisfied as well. Consequently, glu-
ing could not be applied generically. Our results here are
much less restrictive. The condition which must be met is
local, in the sense that it only involves the data in regions
close to the gluing points. Further, the condition is sat-
isfied at all points in generic solutions.

To define the gluing condition in the vacuum case, we
fix a solution (M", v, K) of the vacuum constraint Egs. (1)
and (2) (with p =0, and J = 0), and consider the L?
adjoint ’P;‘% ) of the linearization of the constraint equa-

tions at this solution. Viewed as an operator acting on a

scalar function N and a vector field Y, ’PZ‘Y ) takes the

explicit form

2VY,) = V'Yig; — Ki;N + uKNg;)

Pl oWN.Y)=

! — [
\Y YlKij 2K1(1V])Yl + quVqY glj
_ANg” + V,V]N + (VpKlpgl‘j - lel'j)Yl

3)

Now let {) be an open subset of M". By definition, the set
of Killing initial data sets (KIDs) on (2, denoted K (),
is the set of all solutions of the equation

?Z‘%K)IQ(N, Y)=0. “4)

Such a solution (¥, Y), if nontrivial, generates a space-
time Killing vector field [7] in the domain of dependence
of (Q, vlg, Klg) [8]. In terms of KIDs, our only non-
degeneracy condition is simply that there exist neighbor-
hoods ; 2 p, and Q, 3 p, of the gluing points such
that the KIDs (with no boundary conditions imposed) are
all trivial on €); and (),. We can now formally state our
main result, for vacuum initial data:

Theorem 1.—Let (M, y, K) be a smooth vacuum initial
data set, and consider two open sets (), C Msuch that

the set of KIDs, K(€,), is trivial. (5)
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Then for all p, € Q,, € >0 and k € N there exists a
smooth vacuum initial data set (¥(e), K(€)) on M such
that (¥(e), K(¢€)) is e-close to (, K) ina C* X C* topology
away from B(p;, €) U B(p,, €). Moreover (¥(e), K(€)) co-
incides with (7, K) away from Q; U {),.

While the tie between nontrivial KIDs and the pres-
ence of local Killing fields suggests that the absence of
nontrivial KIDs is generic, such a result requires proof.
Theorems to this effect are proven in [9].

Besides the significant relaxing of the gluing condi-
tions which this new result provides, the fact that the
glued data are identical to the original data away the
points p; and p, in Theorem 1 provides an important
improvement over the earlier gluing results [2,3]. These
earlier results only guaranteed that the glued data set is
arbitrarily close (relative to an appropriate function
space) to what it was originally.
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What happens for solutions of the constraints with
nongravitational ‘““matter”” fields present? If the fields
are entirely described by the choice p and J, then the
conditions needed for gluing are relatively mild: It is
sufficient that p(x) > |J(x)| for all x in a pair of neighbor-
hoods of the points p; and p, at which gluing is to be
done. Since the energy condition p(x) = [J(x)| is gener-
ally imposed for physical reasons, requiring that the
inequality be strict is a mild additional restriction. For
nongravitational fields with the introduction of additional
constraint equations (e.g., the Einstein-Maxwell theory
which adds V- E = 0and V - B = 0), it is likely that the
required condition for a local gluing construction is a
natural generalization of the ““no KIDs” condition.

The construction.—The detailed proofs of Theorem 1
and of the analogous Einstein-matter theorem (with no
extra constraints) are described in [10]. Here, to illustrate
some of the ideas involved, we provide a brief sketch of
the vacuum case. We choose balls B(p,, r;) C ; and
B(p,, r,) C Q, within which to do the gluing. In [9] it
is shown that, under the nondegeneracy assumption (5),
we can e-perturb the data on ) and (),, without chang-
ing them away from those regions, so that the constraint
equations still hold, and so that there are no space-time
isometries in any open set contained within B(p,, r), for
sufficiently small ». The next step is to use a theorem of
Bartnik [11] to deform the balls B(p,, r), in the space-
time evolution of this new data, so that the trace of K is
constant on B(p,, r), reducing r if necessary. The non-
existence of space-time isometries is preserved under this
deformation. This deformation is done so that we are in
the setting in which a generalization of the gluing theo-
rem of [2] to compact manifolds with boundary (and to
include matter fields) may be applied. This constitutes the
third step in the construction and is essentially done by
repeating the arguments of [2,12] in this new setting. We
thus obtain a one parameter family of initial data which
satisfies the constraint equations, and which contains a
neck connecting the spheres S(p,, r). This family of data
has the property that the initial data approach the original
ones in a neighborhood of the S(p,, r)’s when the parame-
ter € tends to zero. However, the transverse derivatives of
those data do not match those of the original ones at the
boundary spheres. This problem is cured, for € small
enough, by a theorem in [13], which holds precisely under
the “no local space-time isometries” condition (5). This
provides the desired gluing, localized within the sets (1.

Space-times with no CMC slices.—One of the original
motivations for attempting to apply gluing constructions
to initial data has been to show that there are spatially
compact, maximally extended, globally hyperbolic solu-
tions of the vacuum Einstein equations with no constant
mean curvature Cauchy surfaces. This result is interest-
ing, since the traditional view of both mathematical and
numerical relativists has been that the most useful and
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reliable choice of time for a globally hyperbolic space-
time is one based on a foliation by CMC slices. Such a
foliation, if it exists in a given solution, has the virtue that
it is unique [14]; CMC slices also appear to avoid singu-
larities in numerical simulations.

In [15], Bartnik shows that there exist maximally
extended, globally hyperbolic solutions of the Einstein
equations with dust which admit no CMC slices. Later,
Eardley and Witt proposed a scheme for showing that
similar vacuum solutions exist [16], but their proof was
incomplete. Using our gluing result in Theorem 1, we can
now complete the argument.

We consider a set of vacuum initial data (T3#T3, y, K),
where T3#T3 is the connected sum of a pair of three tori.
We assume that, relative to some chosen two sphere S on
the connecting cylinder of T3#T3, there is a “‘reflection
map” w:T#T3 — T*#T> with the following properties:
(1) w is a diffeomorphism; (ii) u(S) = S; (iii) w*(y) = v;
and (iv) u*(K) = —K. Note that as a consequence of
these properties, K|g = 0.

It follows from [17] that there is a unique, maximally
extended, globally hyperbolic, development (T3#T3 X
R, g) of the data (T3#T3, vy, K), with g satisfying the
Einstein vacuum field equations on 7°#7° X R. Further,
as a consequence of this uniqueness, the map w described
above extends to a diffeomorphism from (T3#7° X R, g)
to itself with the property that if 3° is a Cauchy surface in
(T3#T? X R, g) with induced data (ys3, Ks3), then u(23)
is a Cauchy surface as well, with its data (?’M(?)’ KM(?))
satisfying

m(Yusn) =y and  u*(K,s3) = —K. (6)

Say there exists a CMC Cauchy surface 2, in the space-
time (7T°#T3 X R, g) with mean curvature tr(Ks ) =7
constant. Applying the map u, we obtain another
Cauchy surface, which must also have constant mean
curvature, but with tr(KM(ET)) = —7. It now follows
from barrier arguments that there must be a maximal
Cauchy surface in the space-time (with 7= 0).
However, if there is such a Cauchy surface, then it follows
from the constraint equations that the scalar curvature on
this maximal surface must be non-negative. This is known
to be incompatible with the topology T°#77 [18]. Thus we
have a contradiction, from which it follows that the space-
time development of initial data with the reflection prop-
erties described above cannot contain a CMC Cauchy
surface.

We now use Theorem 1 to show that we can produce
such data. To start, we use the conformal method to find a
CMC solution (73, 9, K) of the constraints on the torus
which has no conformal Killing fields, has nonvanishing
mean curvature, and has the traceless part of K non-
vanishing. (It follows from [9,19,20] that such data sets
exist.) We easily verify that consequently this data has no
global KIDs, K(T3) = 0.
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Let (M, g) be the maximal, globally hyperbolic, de-
velopment of this data. We deform the initial data hyper-
surface T3 in M to create a small neighborhood of a point
p in which the trace of the new induced K vanishes, while
maintaining the condition K(T3) = {0}.

Now let M consist of two copies of T3, with initial data
(9, K) on the first copy, T3, and with data (§, —K) on the
second copy, T5. We let Q, = T3 for a = 1,2 and we let
p. denote the points in M, corresponding to p. Noting
that the mean curvature vanishes in symmetric neighbor-
hoods of p; and p,, we may now apply an argument
similar to that used in proving Theorem 1 to this initial
data set on M relative to the points p,. For this procedure
to produce the desired initial data set on T3#T3, it is
crucial to verify that all the steps are done with the
correct symmetry around the middle of the connecting
neck. In particular, we must check that the glued data
obtained from this procedure gives a solution of the
constraints which has the symmetry indicated by the
presence of the reflection map w. This is ensured by using
approximate solutions with the same reflection symmetry
in the construction used in the first step of the proof of
Theorem 1. That the end result has the same symmetry
follows from the uniqueness (within the given conformal
class) of the solutions obtained there.

Conclusions.—We see from this result that gluing is a
powerful tool for the mathematical analysis of solutions
of Einstein’s equations. Other results relying on gluing,
such as the proof that for any closed manifold 3 there
exists an asymptotically Euclidean [3] as well as an
asymptotically hyperbolic solution [2] of the constraints
on 2, with a point removed, support this contention. The
notion of gluing which we have explored here, which is
topologically the connected sum or ‘“handle addition”
(for wormholes) operation, is the simplest sort of surgery
one can perform on manifolds. In space-time dimensions
n + 1, for n >3, it is likely that similar results can be
established for other types of surgeries. This extension
would be of interest, for example, in the construction of
black strings [21] and will be discussed elsewhere. Not yet
fully explored is the extent of the utility of this procedure
for constructing physically interesting solutions.
Theorem 1 together with results from [13] shows that
we can use gluing to produce a wide variety of multi
black hole solutions with prescribed asymptotics. We
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can also use it to glue a prescribed black hole to a
cosmological solution. Will these glued solutions be useful
for modeling astrophysical or cosmological phenomena?
We believe so, and we are working to demonstrate this
utility.
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