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Fermionic Field Theory for Trees and Forests
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We prove a generalization of Kirchhoff ’s matrix-tree theorem in which a large class of combinatorial
objects are represented by non-Gaussian Grassmann integrals. As a special case, we show that unrooted
spanning forests, which arise as a q! 0 limit of the Potts model, can be represented by a Grassmann
theory involving a Gaussian term and a particular bilocal four-fermion term. We show that this latter
model can be mapped, to all orders in perturbation theory, onto the N-vector model at N � �1 or,
equivalently, onto the � model taking values in the unit supersphere in R1j2. It follows that, in two
dimensions, this fermionic model is perturbatively asymptotically free.
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Kirchhoff ’s matrix-tree theorem [1] and its general-
izations [2], which express the generating polynomials of
spanning trees and rooted spanning forests in a graph as
determinants associated to the graph’s Laplacian matrix,
play a central role in electrical-circuit theory [3] and in
certain exactly soluble models in statistical mechanics
[4,5]. Like all determinants, those arising in Kirchhoff ’s
theorem can of course be rewritten as Gaussian integrals
over fermionic (Grassmann) variables.

In this Letter, we prove a generalization of Kirchhoff ’s
theorem in which a large class of combinatorial objects
are represented by suitable non-Gaussian Grassmann
integrals. Although these integrals can no longer be cal-
culated in closed form, our identities allow the use of
field-theoretic methods to shed new light on the critical
behavior of the underlying geometrical models.

As a special case, we show that unrooted spanning
forests, which arise as a q! 0 limit of the q-state Potts
model [6], can be represented by a Grassmann theory
involving a Gaussian term and a particular bilocal four-
fermion term. Furthermore, this latter model can be
mapped, to all orders in perturbation theory, onto the
N-vector model [O�N�-invariant � model] at N � �1
or, equivalently, onto the � model taking values in the
unit supersphere in R1j2 [OSP�1j2�-invariant � model]. It
follows that, in two dimensions, this fermionic model is
perturbatively asymptotically free, in close analogy to
(large classes of) two-dimensional � models and four-
dimensional nonabelian gauge theories. Indeed, this fer-
mionic model may, because of its great simplicity, be the
most viable candidate for a rigorous nonperturbative
proof of asymptotic freedom — a goal that has heretofore
remained elusive in both � models and gauge theories.

The plan of this Letter is as follows: First we prove
some combinatorial identities involving Grassmann inte-
grals, culminating in our general formula (12), and show
how a special case yields unrooted spanning forests. Next
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we show that this latter model can be mapped onto the
N-vector model at N � �1 and use this fact to deduce its
renormalization-group (RG) flow at weak coupling.
Finally, we conjecture the nonperturbative phase diagram
in this model.

Combinatorial Identities.—Let G � �V; E� be a finite
undirected graph with vertex set V and edge set E.
Associate to each edge e a weight we, which can be a
real or complex number or, more generally, a formal
algebraic variable. For i � j, let wij � wji be the sum of
we over all edges e that connect i to j. The (weighted)
Laplacian matrix L for the graph G is then defined by
Lij � �wij for i � j, and Lii �

P
k�iwik. This is a sym-

metric matrix with all row and column sums equal to
zero.

Since L annihilates the vector with all entries 1, its
determinant is zero. Kirchhoff ’s matrix-tree theorem [1]
and its generalizations [2] express determinants of square
submatrices of L as generating polynomials of spanning
trees or rooted spanning forests in G. For any vertex i 2
V, let L�i� be the matrix obtained from L by deleting the
ith row and column. Then Kirchhoff ’s theorem states that
detL�i� is independent of i and equals

detL�i� �
X
T2T

Y
e2T

we; (1)

where the sum runs over all spanning trees T in G. (We
recall that a subgraph of G is called a tree if it is con-
nected and contains no cycles, and is called spanning if
its vertex set is exactly V.) The i-independence of detL�i�
expresses, in electrical-circuit language, that it is physi-
cally irrelevant which vertex i is chosen to be ‘‘ground.’’
There are many different proofs of Kirchhoff ’s formula
(1); one simple proof is based on the Cauchy–Binet theo-
rem in matrix theory (see, e.g., [7]).

More generally, for any sets of vertices I; J � V, let
L�IjJ� be the matrix obtained from L by deleting the
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columns I and the rows J; when I � J, we write simply
L�I�. The ‘‘principal-minors matrix-tree theorem’’ reads

detL�i1; . . . ; ir� �
X

F2F �i1;...;ir�

Y
e2F

we; (2)

where the sum runs over all spanning forests F in G
composed of r disjoint trees, each of which contains
exactly one of the ‘‘root’’ vertices i1; . . . ; ir. This theorem
can easily be derived by applying Kirchhoff ’s theorem (1)
to the graph in which the vertices i1; . . . ; ir are contracted
to a single vertex. Finally, the ‘‘all-minors matrix-tree
theorem’’ (whose proof is more difficult; see [2]) states
that, for any subsets I; J of the same cardinality r,

detL�IjJ� �
X

F2F �IjJ�

��F; I; J�
Y
e2F

we; (3)

where the sum runs over all spanning forests F in G
composed of r disjoint trees, each of which contains
exactly one vertex from I and exactly one vertex (possibly
the same one) from J; here ��F; I; J� � 	1 are signs
whose precise definition is not needed here.

Let us now introduce, at each vertex i 2 V, a pair of
Grassmann variables  i; � i. All of these variables are
nilpotent ( 2

i �
� 2
i � 0), anticommute, and obey the

usual rules for Grassmann integration [8]. Writing
D� ; � � �

Q
i2Vd id � i, we have, for any matrix A,

Z
D� ; � �e � A � detA; (4)

and, more generally,

Z
D� ; � � � i1 j1 
 
 


� ir jre
� A 

� ��i1; . . . ; irjj1; . . . ; jr� detA�i1; . . . ; irjj1; . . . ; jr�; (5)

where the sign ��i1; . . . ; irjj1; . . . ; jr� � 	1 depends on
how the vertices are ordered but is always �1 when
�i1; . . . ; ir� � �j1; . . . ; jr�. These formulas allow us to re-
write the matrix-tree theorems in Grassmann form; for
instance, (2) becomes

Z
D� ; � �

 Yr
��1

� i� i�

!
e � L �

X
F2F �i1;...;ir�

Y
e2F

we: (6)

Let us now introduce, for each connected (not neces-
sarily spanning) subgraph � � �V�; E�� ofG, the operator

Q� �

 Y
e2E�

we

! Y
i2V�

� i i

!
: (7)

(Note that each Q� is even and hence commutes with the
entire Grassmann algebra.) Now consider an unordered
family � � f�1; . . . ;�lg with l � 0, and let us try to
evaluate an expression of the form
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Z
D� ; � �Q�1


 
 
Q�le
� L : (8)

If the subgraphs �1; . . . ;�l have one or more vertices in
common, then this integral vanishes on account of the
nilpotency of the Grassmann variables. If, by contrast, the
�1; . . . ;�l are vertex-disjoint, then (6) expressesR
D� ; � ��

Ql
k�1

Q
i2V�k

� i i�e
� L as a sum over forests

rooted at the vertices of V� �
Sl
k�1 V�k . In particular, all

the edges of E� �
Sl
k�1 E�k must be absent from these

forests, since otherwise two or more of the root vertices
would lie in the same component (or one of the root
vertices would be connected to itself by a loop edge).
On the other hand, by adjoining the edges of E�, these
forests can be put into one-to-one correspondence with
what we shall call �-forests, namely, spanning subgraphs
H in G whose edge set contains E� and which, after
deletion of the edges in E�, leaves a forest in which
each tree component contains exactly one vertex from
V�. (Equivalently, a �-forest is a subgraph H with l
connected components in which each component contains
exactly one �i, and which does not contain any cycles
other than those lying entirely within the �i. Note, in
particular, that a �-forest is a forest if and only if all the
�i are trees.) Furthermore, adjoining the edges of E�
provides precisely the factor

Q
e2E�

we. ThereforeZ
D� ; � �Q�1


 
 
Q�le
� L �

X
H2F �

Y
e2H

we; (9)

where the sum runs over all �-forests H.
We can now combine all the formulas (9) into a single

generating function, by introducing a coupling constant
t� for each connected subgraph � of G. Since 1� t�Q� �
et�Q� , we have

Z
D� ; � �e

� L �
P
�

t�Q�

�
X

�vertex-disjoint

 Y
�2�

t�

! X
H2F �

Y
e2H

we:

(10)

We can express this in another way by interchanging the
summations over � and H. Consider an arbitrary span-
ning subgraph H with connected components H1; . . . ; Hl;
let us say that � marks Hi (denoted � � Hi) in case Hi
contains � and contains no cycles other than those lying
entirely within �. Define the weight

W�Hi� �
X
��Hi

t�: (11)

Then saying that H is a �-forest is equivalent to saying
that each of its components is marked by exactly one of
the �i; summing over the possible families �, we obtain

Z
D� ; � �e

� L �
P
�

t�Q�

�
X

H spanning�G
H��H1;...;Hl�

"Yl
i�1

W�Hi�

#Y
e2H

we:

(12)
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This is our general combinatorial formula. Extensions allowing prefactors � i1 j1 
 
 

� ir jr are also easily derived.

We shall discuss elsewhere some of the applications of (12), and restrict attention here to the special case in which
t� � t whenever � consists of a single vertex with no edges, t� � u whenever � consists of two vertices linked by a
single edge, and t� � 0 otherwise. We haveZ

D� ; � � exp

"
� L � t

X
i

� i i � u
X
hiji

wij � i i � j j

#
�

X
F2F

F��F1;...;Fl�

"Yl
i�1

�tjVFi j � ujEFi j�

#Y
e2F

we; (13)
where the sum runs over spanning forests F in G with
components F1; . . . ; Fl; here jVFi j and jEFi j are, re-
spectively, the numbers of vertices and edges in the
tree Fi. [We remark that the four-fermion term
u
P

hijiwij � i i � j j can equivalently be written, using
nilpotency of the Grassmann variables, as
��u=2�

P
i;j

� i iLij � j j.] If u � 0, this formula repre-
sents vertex-weighted spanning forests as a massive
fermionic free field [4,9]. More interestingly, since
jVFi j � jEFi j � 1 for each tree Fi, we can take u � �t
and obtain the generating function of unrooted spanning
forests with a weight t for each component. This is fur-
thermore equivalent to giving each edge e a weight we=t
and then multiplying by an overall prefactor tjVj. This
fermionic representation of unrooted spanning forests is
the translation to generating functions and Grassmann
variables of a little-known but important paper by Liu
and Chow [10].

The generating function of unrooted spanning forests
is also of interest because it arises as a q! 0 limit of the
q-state Potts model, in which the couplings ve � e!Je � 1
tend to zero with fixed ratios we � ve=q [6].

Mapping onto lattice�models.—We now claim that the
model (13) with u � �t can be mapped, to all orders in
perturbation theory, onto the N-vector model at N � �1.
Recall that theN-vector model consists of spins �i 2 RN ,
j�ij � 1, located at the sites i 2 V, with Boltzmann
weight e�H , where H � �T�1P

hijiwij��i 
 �i � 1�
and T � temperature. Low-temperature perturbation the-

ory is obtained by writing �i � �
������������������
1� T�2

i

q
; T1=2�i� with

�i 2 RN�1 and expanding in powers of �. Taking into
account the Jacobian, the Boltzmann weight is e�H 0

,
where

H 0 � H �
1

2

X
i

log�1� T�2
i �

�
1

2

X
i;j

Lij�i 
 �j �
T
2

X
i

�2
i �

T
4

X
hiji

wij�2
i�

2
j

�O��4
i ;�

4
j �: (14)

When N � �1, the bosonic field � has �2 components
and therefore can be replaced by a fermion pair  ; � if we
make the substitution �i 
 �j !  i � j � � i j. Higher
powers of �2

i vanish due to the nilpotence of the
Grassmann fields, and we obtain the model (13) if we
080601-3
identify t � �T, u � T. Note the reversed sign of the
coupling: the spanning-forest model with positive
weights (t > 0) corresponds to the antiferromagnetic
N-vector model (T < 0).

An alternate mapping can be obtained by introducing
at each site, in addition to the Grassmann fields  i; � i, an
auxiliary one-component bosonic field ’i satisfying the
constraint ’2

i � 2t � i i � 1. Solving this constraint
yields ’i � 1� t � i i � e�t � i i and

&�’2
i � 2t � i i � 1� �

1

2’i
&�’i � �1� t � i i��

�
et � i i

2
&�’i � �1� t � i i��: (15)

If we define the superfield ~�i � �’i;  i; � i� with inner
product ~�i 
 ~�j � ’i’j � t� � i j �  i � j�, then the �
model with Hamiltonian H � �T�1P

hijiwij� ~�i 
 ~�j �

1� and constraint ~�i 
 ~�i � 1 corresponds to the fermi-
onic model (13) if we again make the identification t �
�T, u � T. This � model, which is invariant under the
supergroup OSP�1j2�, has been studied previously by one
of us [11]. It is presumably nonperturbatively equivalent
to the N-vector model at N � �1, on the grounds that
each fermion equals �1 boson.

It is worth mentioning that the correspondence
between the spanning-forest model and these two �
models, while valid at all orders of perturbation theory,
does not hold nonperturbatively. (This can be checked
explicitly in the exact solution for the two-site model
[12].) The error arises from neglecting the second
square root when solving the constraints; we did not,
in fact, parametrize a (super)sphere but rather a (super)-
hemisphere. Indeed, since t > 0 corresponds to an
antiferromagnetic � model, the terms we have neglected
are actually dominant. But no matter: the perturbative
correspondence is still correct, and has the RG conse-
quences discussed below. Furthermore, we conjecture that
a nonperturbative correspondence can be obtained by
using a � model with a suitable variant Boltzmann
weight.

Continuum limit.—Suppose now that the graph G is a
regular two-dimensional lattice, with weight wij�w>0
for each nearest-neighbor pair.We can then read off, from
known results on theN-vector model [13], the RG flow for
the spanning-forest model: it is
080601-3
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d�t
d‘

�
3

2)
�t2 �

3

�2)�2
�t3 �

2:342 784 57

�2)�3
�t4

�
1:436 77

�2)�4
�t5 � 
 
 
 ; (16)

where �t � t=w, and ‘ is the logarithm of the length
rescaling factor; here the first two coefficients are univer-
sal (after suitable normalization of the kinetic term),
while the remaining coefficients are for the square lattice
only. The positive coefficient of the �t2 term indicates that
for t > 0 the model is perturbatively asymptotically free.
Indeed, two-dimensional N-vector models are asymptoti-
cally free for the usual sign of the coupling (T > 0) when
N > 2, but for the reversed sign of the coupling (T < 0)
when N < 2. Assuming that the asymptotic freedom
holds also nonperturbatively, we conclude that for t > 0
the model is attracted to the infinite-temperature fixed
point at t � �1, hence is massive and OSP�1j2� sym-
metric. For tcrit < t < 0, by contrast, the model is at-
tracted to the free-fermion fixed point at t � 0, and
hence is massless with central charge c � �2, with the
OSP�1j2� symmetry spontaneously broken. Finally, for
t < tcrit we expect that the model will again be massive,
with the OSP�1j2� symmetry restored.

More specifically, for t > 0 it is predicted that the
correlation length diverges for t # 0 (or w " �1) as

+ � C+e
�2)=3��w=t�

�
2)
3

w
t

�
1=3

�

�
1� 0:011 622 120 4

t
w

�0:004 461 42
t2

w2 � 
 
 


�
; (17)

where C+ is a nonperturbative constant (the terms in
brackets are for the square lattice only). The numerical
results of [6], based on transfer matrices and finite-size
scaling, are consistent with the nonperturbative validity
of the asymptotic-freedom predictions (16) and (17), but
are inconclusive because the strip widths are small (L �
10). It would be interesting to make a Monte Carlo test of
(17), at large correlation lengths, along the lines of [14].

The numerics of [6] are also consistent with the central
charge c � �2 in the massless phase tcrit < t < 0 but are
not definitive because of the strong (1= log) corrections to
scaling induced by the marginally irrelevant operator.

Finally, the critical point tcrit presumably corresponds
to the q! 0 limit of the antiferromagnetic critical curve
in the q-state Potts model, under the identification w=t �
�e!J � 1�=q. Known exact results for the square lattice
[15,16] yield �w=t�crit � �1=4. The analysis of the criti-
cal theory proves rather difficult, but there are strong
indications that it is simply a free OSP�1j2� model, i.e.,
the theory of a noncompact boson and a pair of fermions,
with central charge c � �1.

Let us also remark that there exists a much-studied
variant of the N-vector model in which the high-
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temperature expansion on the lattice has been truncated
so as to forbid loop crossings [17]. For �2<N < 2, this
model possesses several critical points; in particular, the
dilute-loop critical point is expected to be generic in the
sense that adding loop crossings acts as an irrelevant
perturbation. For N � �1, this yields a c � �3=5 theory
[18]; the relation to the c � �1 theory discussed above is
mysterious and deserves further study.

It would also be interesting to know whether our iden-
tities are in any way related to the forest-root formula of
Brydges and Imbrie [19], which leads to a dimensional-
reduction formula for branched polymers.
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